NH
& JOURNAL OF

\$ e T VAR
?E GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 44 (2003) 570-594

www.elsevier.com/locate/jgp

Differential calculi over quantum groups and twisted
cyclic cocycles

J. Kusterman$ G.J. Murphy*, L. Tusef

a Department of Mathematics, KU Leuven, Belgium
b Department of Mathematics, National University of Ireland, Cork, Ireland
¢ Faculty of Engineering, University College, Oslo, Norway

Received 4 April 2002

Abstract

We study some aspects of the theory of non-commutative differential calculi over complex alge-
bras, especially over the Hopf algebras associated to compact quantum groups in the sense of S.L.
Woronowicz. Our principal emphasis is on the theory of twisted graded traces and their associated
twisted cyclic cocycles. One of our principal results is a new method of constructing differential
calculi, using twisted graded traces.
© 2002 Elsevier Science B.V. All rights reserved.

MSC:46L; 81R50

Subj. Class.Quantum groups

Keywords:Hopf algebra; Differential calculus; Twisted graded trace

1. Introduction

A compact group is a compact space with a continuous multiplication satisfying certain
extra conditions. In the theory of compact quantum groups developed by S.L. Woronow-
icz [3,4,6,7,9] one replaces the compact space by a unitahlgebraA that is in general
non-commutative, and replaces the group multiplication by a co-multiplicaticgnsatisfy-
ing certain cancellation conditions. Containediiis a dense-subalgebrad, therepresen-
tationalgebra, that is a Hopf algebra under the restriction co-multiplication. Ba@thd.4
admit a Haar integral and this is vital for many aspects of the theory we develop in this paper.

The considerations in this paper are motivated by the theory of compact quantum groups,
but it is not these objects that we study here; rather, we study differential calculi over such
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groups. Our context is therefore non-commutative differential geometry in the spirit of that
subject as developed by Alain Conrj@s The study of differential calculi in the quantum
group setting was initiated by Woronowicz—indeed, he constructed the first example of
such a calculuf8]. However, it was immediately apparent in his work that Connes’ theory
of non-commutative geometry does not cover the calculi occurring in the quantum setting.
To explain briefly what is involved, recall that although the algebra of forms in the clas-
sical setting of differential manifolds is not commutative, it is “nearly” so, in the sense
thatwe' = (—-1)¥w/w, if  andw’ are ak-form and an/-form, respectively. In Connes’
non-commutative geometry, it is no longer true thai’ = (—1)Xw’'w. However, for a
graded trace (this is an appropriate kind of “integral” on the “non-commutative manifold”),
we have[ wo’ = (-1)¥ [ @'», wherew andw’ are ak-form and an-form, respectively.
This integral condition is of fundamental importance in the cyclic cocyle theory developed
so successfully by Connes in the past two decades. However, even this weaker commuta-
tivity condition does not hold in the context of differential geometry over quantum groups.
If one thinks of a graded trace as the analogue of a trace ohaggébra, then one can
explain the situation in the quantum setting by saying that one must replace a trace by a
KMS state. More precisely, in this setting there is an automorphisoh degree zero of
the algebra of forms such thgtwe’ = (—D)K [ o (0w, wherew andw’ are ak-form
and an/-form, respectively. This is, of course, analogous to the situation with a KMS state
h on a C-algebra, where one has an automorphiswn a dense:--subalgebra for which
h(ab) = h(o (b)a), for all elements: andb in the subalgebra.

In his seminal paper on differential calculi over quantum grg8hdVoronowicz remarks
that the integral he defines on his three-dimensional calculus over the quantum gga@p SU
does not fit into the framework of Connes’ non-commutative geometry, but he does not
develop this observation. In this paper, we introduce the concept of a twisted graded trace
(the analogue of a KMS state) to replace Connes’ graded traces. It is then necessary to
develop a theory of twisted cyclic cocycles and we do this here. One of our principal results
is a new method of constructing differential calculi; in essence, in this approach we start with
a twisted graded trace and construct a calculus (in Woronowicz’s approach one goes in the
opposite direction). We feel that our approach may be more natural, since, to some extent,
it involves giving a “presentation” of the calculus in terms of generators and relations.

We give a brief overview of the paper now.3ection ave introduce the basic terminology
and prove two theorems that are very useful for constructing twisted graded traces. We also
introduce a quotient construction for obtaining a differential calculus from a twisted graded
trace. InSection 3we introduce twisted cyclic cocycles and develop their relationship with
twisted graded traces. In both this section and the next, we develop a theory of twisted cyclic
cohomology. This contains Connes’ theory as a special case, but, as we have indicated above,
the more general theory is necessary to deal with the examples that occur in the quantum
group setting. However, the theory develope8dattions 2—4s not restricted to the quantum
group setting and applies in the more general context of differential calculi over arbitrary
unital algebras. IrSection 5we develop aspects of the theory of left-invariant twisted
graded traces over left-covariant differential calculi. In this situation the underlying algebra
is assumed to be a Hopf algebra. An important result here is that the differential calculus
constructed from a left-invariant twisted graded trace on the universal calculus is shown
to be itself left-covariant. Also, we give a characterization of the twisted cyclic cocycles
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that correspond to left-invariant twisted graded traces. In the final seGéwution 6 we
show how our ideas can be used to give an alternative construction of Woronowicz’s first,
three-dimensional, differential calculus over quantum(3U

2. Differential calculi

In this section, we set up the basic terminology for studying differential calculi over
algebras that are not necessarily commutative. One can think of this as the study of differ-
ential forms in the setting of quantum spaces or manifolds. We give a general procedure for
constructing such calculi. We begin by recalling some basic definitions.

Let 22 be a (positively) graded algebr@, = ©;° ,£2,. A graded derivatioron 2 is a
linear mapd : 2 — $2 for whichd(o'w) = d(w)w + (-1)"’ dw, for all o’ € £2,, and
allw e £2.

A graded differential algebrés a pair(£2, d), wheres2 is a graded algebrd,is a graded
derivation ons2 of degree 1 (as a linear map) a#tl= 0. The elements of2 are referred
to as thdormsof (£2, d) and the elements &2, as then-forms The operatod is referred
to as thedifferential

Now suppose thatl is an arbitrary associative unital algebra. Then there is a graded
differential algebra 2, d), for which 2o = A, that has the following universal property:

If o is an algebra homomorphism frop into the algebraf2g of O-forms of a graded
differential algebra$2, d), then there exists a unique algebra homomorptisfrom 2

to 22 extendingo such thaizd = dé. This property uniquely determings2, d) (up to
isomorphism). Note thai is clearly necessarily of grade zero. We shall usually denote the
extensions by the same symbat as the original homomorphism.

We shall use the following two useful properties(ed, d):

(1) Letn > 1. Then every element a2, is a sum of elements of the forag day - - - da,,
and di; - - - da,,, where the elements), a1, ..., a, belong toA;

(2) Letn be a positive integer anl; a multilinear map from4"*! to a linear space
Y andT> a linear map fromA” to the same linear spadé Then there is a unique
linear mapT from £2,, to Y for which T(ao dai---da,) = Ti(ag, as,...,a,) and
T(dal -da,) = To(as, ...,ay), forallag, ax, ..., a, € A.

In practice, the universal graded differential algetsga d) is too big to be useful. How-
ever, it can be used to construct smaller, finite-dimensional differential algebras that are
useful.

A differential calculusover A is a graded differential algeb(a2, d) for which

(1) 20 = A4
(2) Letn > 1. Then every element @2, is a sum of elements of the forag day - - - da,
and di; - - - da,,, where the elements, a1, ..., a, belong toA.

If the differential calculug? is unital (as an algebra), then the unit®@fhas to belong to
£20 = A and therefore has to be equal to the unit 14of

We shall say the differential calculys?, d) is finite-dimensionalof dimension, if
2y #0and2, =0forn > N.
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The universal graded differential algebra is clearly a differential calculus.dyveut it
is, equally clearly, not finite-dimensional, nor unital.

We now describe a general procedure for obtaining a new, “smaller” calculus from a
given calculus. LetV be a positive integer and I€12, d) be a differential calculus over
A that is either not finite-dimensional, or is of finite dimension greater fiiae define
a new differential calculugs2’, d’) of dimensionN by setting$2, = 2, if k < N and
2, =0, if k > N. We define the multiplication in 2" by setting, forw; € $2; and
w2 € 2, w1 - w2 = wiwy, if k+1 < N, and by settingo; - wp =0ifk+1 > N. We set
d'(w1) = d(w1), if k < N and setd'(w1) = 0, if k > N. We call(£2’, d’) the differential
calculus of dimensioV obtained from(§2, d) by truncation

If (12, d) is a differential calculus oved, we say a linear functionaf on £2 is closed
if f[d=0.1fwi,...,on € $2,then a simple induction shows thabgddw; - - - dwy =
d(w1dw; - - - dwp). Hence, if[ is closed,/ dw1 dw; - - - dwy = 0. We shall frequently tac-
itly make use of this observation.dfis ak-form ande’ an arbitrary form, the[f (dw)w' =
(—1)"+1fwda)’, another result we shall use tacitly in the sequel. It follows from the fact
thatd (we') = (do)o’ + (—1)*w do’ and [ d(ww’) = 0.

Alinear functional/ on £2 is atwisted graded tracé there is an algebra automorphism
o : 2 — £ of degree zero for whichd = do and [ w'w = (—~DN [ o (w)w/, for all
non-negative integersand! and for allw € £2; andw’ € £2;.

We say is atwist automorphisrassociated tg. Itis useful to observe thgto (w)= [ o,
for all w € £2. To see this, observe first that= a1 and & = d(al) = (da)1 + a(d1) for
alla € A. It follows that any element of? is a sum of products of two elements@f Let
w, o € £2.Wemaywritaw = )", wy andw’ = Y, w},, wherewy, w; € ;. Then[ wo' =

Yo ok = Zk)l(—l)klfo(wl’)a)k =Yoo (@)= [o(wo (@)= [o(wv).

Theorem 2.1. Let(£2, d) be the universal calculus over a unital algebda Suppose that
/[ is a closed linear functional o® and thatog : A — A is an algebra automorphism
for which [ oo(a)w = [wa, foralla € Aandw € 2. Then/ is a twisted graded trace
having a twist automorphismn that extendsp.

Proof. The automorphismgg : 20 — 20, extends uniquely to an automorphism,:

2 — £, for whichad = do, by the universal property af2, d). We shall show thaf

is a twisted graded trace, withas its twist automorphism. Thus, to prove the theorem, we
have only to show that, for each positive inte@&r

/ o'w = (—=1)kN-h / o (0, (2.1)

for all integersk such that O< k < N, and for allw € £2; andw’ € 2y_i. We shall prove
this by induction ork. It clearly holds fork = 0 by hypothesis. Let's assume it holds for
and we shall prove it fok + 1, where we also suppose thtat- 1 < N. We first show that

/a do = (=1)*kFDWN—k=D / o (dw)a, (2.2)

wherew € 2, anda € 2y 1. We suppose first that+ 1 < N. If « = do’, whereo' ¢
2n—k—2, the closeness of implies that both sides of the above equation are 0 and hence
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equal. Since2y_;_1 is the linear span of elements of the form’éind(dw’)a, wherew’ e
2n_k—2anda € A, we may now clearly suppose that= (do’)a. We have/ (dw')a do =
[ do’ d(aw) — [(do')(da)o = — [(do')(da)w = (—=D)*N=H [ 5 (w)(dw') da, by the
inductive hypothesis. Sincé(o (w)o') = (do () + (—1D)Fo(w) do’ = o(dw)w’ +
(—D)¥o (w) do', we get

/ (do)a dw = (—1)HHFN=R 1)k [ / d(o(w)w) da — / o (dw)w’ dai|

= (—1)1+k(N—k)(—1)k+1/a(da))a)/ da

— (=) LHRN =) )kl _q)N—k-2

X [/U(dw)d(w'a)—/a(dw)(dw’)a]

— (_1)1+k(N—k)(_1)k+1(_1)N—k—1/O_(dw)(da)/)a

= (=1)*kFDWN=k=D) / o (dw) (dw)a.

This shows thaEq. (2.2)holds, as required, wheh+ 1 < N. Fork + 1 = N the
argument is similar, but much simpler, and is therefore omitted. It follows now &Egm
(2.2)that, for alla € A, we have

/aa do = (—l)(k+l)(N_k_1)fo(da))aa

= (—l)(k+1)(N_k_1)/Uo(a)a(da))a = /U(a dw)a.

This shows thaEq. (2.1)is satisfied fok in place ofk + 1. This completes our induction,
soEq. (2.1)is now seen to be true far=0, ..., N. a

We say that a linear functiongl on £2 is left faithful if, wheneverw € &2 is such that
J@'w=0,forall € £2, we necessarily hawe = 0.

Theorem 2.2. Suppos€s?, d) is a differential calculus over a unital algebtd. Suppose
that [ is a left faithful, closed linear functional af? and thatog : A — A is an algebra
automorphism for whiclf og(a)w = [wa, forall a € Aandw € 2. Then| is a twisted
graded trace having a twist automorphignthat extendy.

Proof. The automorphismgo : £20 — $20, extends uniquely to an automorphisan,:
2 — 2, forwhichad = d&, by the universal property of the universal differential calculus
(£2, d). Likewise the isomorphism, ig: 29 — 20, extends uniquely toasurjectlve homo-
morphismy : 2 — £, such thatrd = dr. We definef’ on$2 by setting/’ w = [ 7(w),
forallw € 2. Clearlyf is a closed, linear functional a2 satisfying the hypothesis of the
preceding theorem. Hencﬁ/, is a twisted graded trace, withas its twist automorphism.
Suppose now thab € 2 andx (w) = 0. We shall show that (6 (w)) = 0. If o’ € £2,
then [ (5 ()7 (G (@) = ['6(@w) = [ 0o = [r()n(w) =0, sincer(w) = 0. It
follows from faithfulness off thatz (¢ (w)) = 0, as required.
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We can now use this invariance of kep unders to induce a homomorphism on
2 defined by settingr (7 (w)) = 7(6(w)), for all @ € 2. It is clear that/ w'ew =
(=DM [ o (w)o', for all integersk and! and for allw € 2, andw’ € £2;. Clearly, sincex
extendsp, so does. It is easily checked thatd = do. Moreover,s is surjective, since
& andx are. Thus, to show thdtis a twisted graded trace withas twist automorphism,
we need only show now thatis injective. To see this, suppose that 2; ando (w) = 0.
Then [ o'w = (~DX [ o(w)e’ = 0, for all integers and for allw’ € £2;. Hence, sincg’
is left faithful, = 0. Thereforeg is injective, as required. O

If [ is alinear functional on a differential calculus, gt kernelis defined to be the set
of all formsw for which [ w'w = 0, for alle’ € £2. Obviously, the left kernel is a left ideal
of 2. If the intersection of the left kernel ¢f with A is the zero space, we sdyis weakly
faithful. Obviously, [ is left faithful if, and only if, its left kernel is the zero space; hence,
[ is weakly faithful if it is left faithful, as one would expect.

Theorem 2.3. Let [ be a twisted graded trace on a differential calculi$8, d) over a
unital algebra A.

(1) J is weakly faithful if and only if for each element € A for which [ aw = 0, for all
w € §2,we haver = 0.
(2) If [ is weakly faithfulthen | admits exactly one twist automorphism.

Proof. First, suppose thaf is weakly faithful. Lets be any twist automorphism ¢f and
suppose that € A and that/ aw = 0, for allw € £2. Then [ wo~1(a) = 0. Hence,
by weak faithfulness of, o 1(a) = 0 and thereforeg = 0. This shows the forward
implication in Condition (1) and the reverse implication is shown by similar reasoning.
To see Condition (2) holds, lgt ando be twist automorphisms fof. Then, for all
a€ Aandw € 2, [(p(a) —o(a)w = [ pl@)w— [o(@)w = [ wa — [ wa = 0. Hence,
p(a) = o(a). Using the fact thapd = dp andod = do, it now follows immediately that
p=o0. 0

Let N be a non-negative integer. We say that a linear functigrail 2 is N-dimensional
if [ =0, forallk-forms, wherek # N.

Suppose nov]’ is anN-dimensional, weakly faithful, closed twisted graded trace on a
differential calculug 2, d) over A and let5 denote the twist automorphism ﬁf. We are

going to construct a newy -dimensional, differential calculus?, ) from (£2,d, f/) and
a new,N-dimensional, closed twisted graded trgcen 2 that is left faithful.

The twisted tracial property of’ implies that, for each fornw € §2, the condition
[@'w=0,foralle’ e £2,is equivalent to the conditiofiww’ = 0, for allw’ € £2. Hence,
if 1 isthe leftkernel off’ ,itis notonly a leftideal of2, butis also aright ideal. We denote by
2 the quotient algebre /1. Itis trivially verified thats2, < I foralln > N and that ifr €
1,thenitskth componendy belongstd also. It follows that 2, denotesthe image & in
the quotientalgebre, then2 = Q20®- - -®£2y. Moreover, this makeR into agraded alge-
bra. Sincd N.A = 0, becaus¢’ is weakly faithful, we may, and we do, identifyo with A.
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If o € 2¢ andw € I, then [« do = (=% [’ (dw)w = 0. This implies that
dw € I.Henced(I) C I and thereford induces alinearmag: 2 — 2. Itisimmediate
thatd is a graded derivation af? and, indeed, that2, d) is anN-dimensional differential
calculus overA.

Sincef’ clearly annihilates, we get an induced linear mgpon £2. Also, it is clear that
o (I) C I, sothats induces an algebra automorphisnon £2. It is now easily verified that
[ is anN-dimensional, closed twisted graded trace@mwith o as its twist automorphism.

We call (2, d) the differential calculusassociated t@s2, d, f/) and | the canonical
twisted graded trace of2. The significant gains resulting from this construction are that
(£2, d) is finite-dimensional and thgt is left faithful.

Itis straightforward to verify that if one starts with ardimensional differential calculus
(£2, d) over A, and with a left faithful, closed twisted graded traten 2, then (up to
isomorphism) one can obtai@, 4 and | by the preceding quotient construction from an
N-dimensional, weakly faithful, closed twisted graded tr;i/cem (£2,d).

The question now arises as to how we can obtain twisted graded trace, din. We
shall see these arise from twisted cyclic cocycles. We shall discuss these objects and explain
their relationship with twisted graded tracesSaction 3

Suppose now thadl is a unital«-algebra. We shall say tha®, d) is ax-differential cal-
culusoverAifitis a differential calculus oved and if§2 is endowed with a conjugate-linear
map, 2 — £, o — o*, extending the involution ond, having the following
properties:

(1) (@)* =w, forallw € 2;
2) (@102)* = (-DNwje}, forallwy € 2 andw; € $2/;
(3) d(w*) = (dw)*, forallw € £2.

We shall call the mapy — o*, thegraded involutionof §2. Notice that there is at most
one such graded involution.

Alinear map,/ : 2 — C, isself-adjointif [ w* = ([ w)~,forallw € £2.

The universal differential calculus?, d) of ax-algebraA is ax-differential calculus in
a natural way. Suppose noﬁ\? is an N-dimensional, weakly faithful, self-adjoint, closed
twisted graded trace aif2, d). Let I be its left kernel($2, d) the associatedy -dimensional
differential calculus and the canonical twisted graded trace©@nThen! is self-adjoint—
that is, ifw € I, thenw* € I—and (£2, d) is a x-differential calculus overd, where
(w+ D* = o* + I, forallw € 2. To seel is self-adjoint, suppose that is ak-form
belonging tol. If o’ is an(N — k)-form, then [’ w/'w* = (=N (" v (0)*)~ = 0.
Hencew* € I. This proves/* C I. It now follows easily that the involutiofw + I)* =
o* + I makes(£2, d) into ax-differential calculus oved. It is equally easy to see that
is self-adjoint.

3. Twisted cyclic cocycles and differential calculi

Suppose thatl is a unital algebra. For > 0, letC"(A) denote the set of all multilinear
maps fromA™*! to C. SetC*(A4) = ®,enC"(A). ThenC*(A) is a graded linear space.
There exists a unique linear map,: C*(A) — C*(A), making (C*(A), b) a cochain
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complex for which, forp € C"(A),

n
(bp)(ao, ..., ans1) = Y (~Dig(ao, ..., 41,8011, ai12, ..., dnt1)
i=0
+(=)" g (ap+1a0, a1, ..., ap).

TheHochschild conomologflH* (A) of A is defined to be the cohomology @* (A), b).
Thus,HH"(A) = H"(C*(A), b) for all n € Z (where we understand it to be zermifs
negative).

Thepermutation operatok on C*(A) is the linear isomorphism of degree zero, defined

by settingA(¢)(ag, a1, ..., a,) = (=1 "¢(a,, ao, a1, ...,a,_1), forn > 0,9 € C"(A)
andao, ..., a, € A. SetC;(A) = @,eNCl (A), whereCl (A) = {p € C"(A) |1 (p) = ¢}.
The coboundary operatbrleaves each spa€ (A) invariant and therefore its restriction
makes(Cj} (A), b) into a cochain complex. The cohomology of this complex is denoted by
H; (A) and called theyclic conomologpf A. Thus,H (A) = H"(C; (A), b).

It will be useful to recall also the degree 1 operdibon C*(A) defined by the formula

n

0'p)ao, ..., ant1) = Y (~Dig(ao, ..., ai-1, aiai11, i12, - ., any1)
i=0

forn > 0 andy € C"(A). Itis well-known that(b’)2 = 0 and that the cohomology of the
cochain complexC*(A), b’) is trivial, H*(C*(A), b") = 0.

We generalize the definition of cyclic cohomology now. Suppose (tHat) is a pair
consisting of a unital algebrd and an algebra automorphism: A — A. We get a new
operator corresponding to the permutation operator, a linear isomorphis@i(A) —
C*(A) of degree zero, by setting

)"((p)(a07 al 5555 an) = (_1)’1(;0(0 (an)1 a07 al 7777 al‘l—l)

forn > 0 andg € C"(A). We setC; (A, o) = @,enCh (A, 0), whereCl (A, 0) = {p €
C"(A)Ir(p) = ¢}. We shall makeC} (A, o) into a cochain complex whose cohomology
will be a “twisted” version of ordinary cyclic cohomology. To this end we introduce new
operators andb on C*(A), both of degree 1. These are defined by setting b’ + c,
where, forp € C"(A), andao, ..., a, € A,

(€)(ag, - .., an+1) = (=" Yp(0 (@ns1)ao, ai, . .., an).

Thus,b is a “twisted” version of the usual Hochschild coboundary operator. To see that
b2 = 0, one uses the fact thév')2 = 0 and proves the easily verified fact thelt’ +

b'c + ¢2 = 0. As in the classical cyclic cocycle theory, one can show lthét — ) =

(1 — A)b. This immediately implies tha€} (A, o) = {¢ € C*(A)|r¢ = ¢} is invariant
underb. Hence, by restrictingp, we get a cochain comple/C; (A, o), b). We denote by

H} (A, o) the cohomology of this complex and call it theisted cyclic cohomologgf

(A, o). We denote byZ! (A, o) andB (A, o) then-cocyles andi-coboundaries for the
complex(C; (A, o), b). We call the elements of these spacestthisted cyclicn-cocyles
andn-coboundarie®f (A, o), respectively.
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Clearly, ifo = id 4, thenH} (A, o) = H} (A).

Theorem 3.1. Let(£2, d) be a differential calculus over a unital algebré and suppose
that [ is an N-dimensional closed twisted graded trace of2. Define the functiony :
ANt 5 C, by setting

(p(aO?'-'ﬂaN) = /aodal"‘daN.

Leto be an automorphism ofl for which [ o (@) = [wa,foralla € Aandw € 2y.
Theng belongs taZ) (A, o).

Proof. We show first thathp = ¢. Letao, ..., ay be elements ofA. Then, sincef is
closed, anddp - - -day_1 = d(apday - - - day_1), we have

Ag(ao, ...,aN) = (—1)N/0(a1v)dao~-~da1v—1 = (-DV /(dao---dazv—l)azv

= /ao(dal ---day_1)day = ¢(ao, ..., an).

To show thabg = 0, we shall use the fact that

N

Y (=D’ das---d(@iaiy1) - - day 1
i=1
= (=1)N(day - - - dan)ay41 — a1daz - - - dan1, (3.1)

forallas, ..., an+1 € A (this is well-known, se, p. 187). It follows from this equality,
and from the twisted tracial property ¢f that

N

be(ao, ..., an+1) = Y (=1 /aodal---d(aiai+1)~-~da1v+1
i=1

+ /aoa1d02~-daN+1+(—1)N+lfG(aN+1)ao day - - -day
= /ao((—l)N(dal ---day)ayi1 —aidaz---dayy1)

+ /aoaldaz~~‘daN+1+(—l)N+1/ao(dal'~-daN)aN+1=0-
The theorem is now proved. |

We callp the twisted cyclic cocyclassociated t@s2, ) and .

Theorem 3.2. Leto be an automorphism of a unital algebrhand lety € ZQ’(A, o), for

some integeN > 0. Then there exists aN-dimensional differential calculu&?, d) over
A and anN-dimensionalclosed twisted graded tracg on §2 such thaty is the twisted
cyclic cocycle associated @2, d) and /.
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Proof. Define anV-dimensional linear functiongl” on the universal differential calculus
$2 over A by setting [  agdas - --day = ¢(ao, . ..,ay) and ['day - - -day = 0, for all
ao, .. .,an € A. By definition, [ is closed.

Next we show thaf” way+1 = [ o (ay+1)w, forallay;1 € Aand allo € £2. Clearly,
to show this, we may suppose that= agda; ---day or @ = daj - - - day, for some
elementsi, ..., ay € A. Then, using the fact théy = 0 and therefordy’p = —cgp, and
again usingzqg. (3.1) we have

/
/ o(ay+1)apdas - - - day
= (-)V*ep(ap, ..., an+1) = (—D¥Dg(ao, . . ., an+1)

N
= (DY) (—D'g(ao, ..., aiaiy1, ..., an11)
i=0

N /
= (=" (Z(—l)i/ aodal'"d(aiai+1)"'daN+1+/
i=1

= (-DV ( f ao((—1)N (day - - -day)ay+1 — a1 daz - - - day+1)

/

agaiday - - - daN+1)

/
+ / apaidaz - - - daN+1>
/
= / apg(day - - - dan)an41.
In the other case
/ o(ay41)day---day = @(o(an+1), a1, ....an) = (=DVo(as, ..., ay, an+1)
/ /

= (—1)N/ aydaz - --dayy1 = / (day - - -day)ayy1,

where we used the closenessféfand the aforementioned fact in the last equality.
It follows now thatf’ is a twisted graded trace. Now le®R, d) be theN-dimensional

differential calculus obtained fror® by truncation, and lef’ be the restriction of” to
2. Clearly, [ is again a closed twisted graded trace gni$ the twisted cyclic cocycle

associated t0s2, d) and | . O

If o is an automorphism of a unital algebrbandg € C;(A, o), we say thatp is
left faithful if, for each element in A, we havea = 0, if p(aag, ai,...,ay) = 0, for
all ag,...,ay € A. Sincerp = ¢, we have, for each index = 0,...,N,a = 0, if
¢(ag, a1, ...,aa,...,ay) =0, forallag, ...,ay € A.

Theorem 3.3. Leto be an automorphism of a unital algebsd and lety € Zf\V(A, o),
for some integeN > 0. If ¢ is left faithful then there exists aW-dimensional differential
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calculus($2, d) over.A and a left faithfulV -dimensiona|lclosed twisted graded trageon
£2 such thatp is the twisted cyclic cocycle associated {d, ¢) and /.

Proof. Define anV-dimensional linear functional’” on the universal differential calculus
£2 over A by setting ["apday - - -day = ¢(ap, . ..,ay) and ["das - --day = 0, for all
ao, ...,ay € A. We saw in the proof of the preceding theorem tﬁ/ats a closed twisted
graded trace. The faithfulness assumptiop@nsures thaf " is weakly faithful. Now let
(£2, d) be theN-dimensional calculus associateds®and [ and let/ be the canonical
N-dimensional, left faithful, closed twisted graded traceanTheng is clearly the twisted
cyclic cocycle associated to a

To round off this circle of ideas, let us note thafifs anyN -dimensional, weakly faithful,
closed twisted graded trace on a differential calcl2sd) over a unital algebrad, the
associated twisted cyclic cocyalels clearly left faithful.

We turn now to the case efdifferential calculi. If($2, d) is such a calculus over a unital
x-algebrad, thenitis readily verified that, for all 1-forms, ..., wy of 2, (w1 - - - wN)* =
sywy ---wi, where(sy) is the sequence of scalars defined inductivelyspy= 1 and
sn+1 = (=D Vsy. If ¢ is the N-cocycle associated to an-dimensional weakly faithful,
closed, self-adjoint, twisted graded traﬁ@n 2, thengp™ = ¢, wherep*(ag, ...,an) =
sN+1@(ay, ..., agp) (@s usualg is the complex conjugate function corresponding t@o
thatg(x) = ¢(x)). To see thap* = ¢, observe that, if is a twist automorphism associated
to [, then

¢*(ag, ..., an) = syt1p(ay, ..., a8) = sy (=D g0 (ad), al, ..., a7)

= syr1(—DN (/ o(ag)(day) - (daf))

= (—1)NSNSN+1f(dal) -+ (day)o (ag)*
_ .2 -1

= sN+1/(da1) -+ (dan)o ™" (ao)

= /aoda1-~-daN =¢(ag,...,an).

Here, in the third last equation, we have used the easily verified fact tHét*) = o (a)*,
for all a € A (this uses weak faithfulness ¢}.

These observations motivate the following definitions.

If the function,p : ANT1 — C, is multilinear, we define* by settingp*(ao, . . ., ay) =
sny1¢(ay, ..., ag), forallag, ..., ay € A.

If o is an automorphism ofl such thawv (a)* = o ~1(a*), for alla € A, then we calb
regular. As we observed above, the restriction4mf a twist automorphism associated to
a weakly faithful, self-adjoint twisted graded trace is regular. Another observatiorisif
any self-adjoint automorphism of ando? = id, theno is regular.

It is easy check that, i& is any regular automorphism of, andg € C (A, o), then
p* € CiV(A, o). Itis also the case that, Ifp = 0, thenby* = 0. However, this requires
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some proof, so we give the details. It clearly suffices to show tha, if.., ay+1 € A,
then

N
D (Viplay,a. - afaar, ... ap) + (D" @y, ... af, ajo(an11)*) = 0.
i=0
Setb; = ay_ 4 ;, fori =0,..., N + 1. Multiplying the above equation by-1)V and
using the fact that (ay +1)* = o ~(a}y, ;) = 6 ~1(bo), we see that we need only show that

N
> DN pbo. ... by —ibn—i1. ... by11)
i=0

+(=1)2N*g(by, ..., by, by 110 L(bo)) = 0.

Now we use the factthay = ¢, whichimpliesthat—1)N ¢(b, . .., by, byy10 ~1(bo)) =
@(o(by+1)bo, b1, ..., by), to see that we have only to show that

N
> =DV gbo, ... by—iby—it1. ..., by 1)
i=0

+(=D" (o (by+1)bo, b1, ..., by) = O;

that is, it suffices to show that
N .
Y =Digbo, ..., bibit1, ..., b)) + (DY e(a (by11)bo, b, . .., by) = 0.
i=0

However, this is true, since it is just the equatibh+c)p(bo, . . ., by+1) = 0, which holds
becausdy¢ = 0, by assumption.

If we defineg to beself-adjoint if ¢* = ¢, then the preceding observations, together
with the easily checked equatiop™)* = ¢, show that every elemente ZQ’(A, o) canbe
written in the formg = @1 + i@, for some self-adjoint elemengg andg; in ZY (A4, o).

(Of course, one setg = (¢ + ¢*)/2 andyy = (¢ — ¢*)/2i.)

Now suppose thaf is anN-dimensional, closed, twisted graded trace endifferential
calculus(£2, d). If the twisted cyclicN-cocycley associated tg' is self-adjoint, thery is
self-adjoint. To see this we need only show that)~ = [ w*, wherew = agday - - - day
or w = day - - - day, for elementsi, .. ., ay belonging tad. However, we have

(/ a)> = @(ao, ...,aN) = ¢*(ao, ..., an) = sy+19(ay, ..., ay)
=SN+1/07v(daT)-~(daS) = (_1)N/((d00)"'(daNfl)aN)*

=(-1N / (d(agday - - -day_1)an)*= / (apd(a1daz - - - day))*= / w*.

Inthe second last equation we used the factthat= 0 andthat/ ((ag day - - - day—1)an) =
d(apday - - -day_1)ay + ()N Lagd(aidas - - - day).
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If o =das---day, itis clear that/ « = 0 = [ w* due to the closeness ¢f
We sum up our observations in the following theorem.

Theorem 3.4. Let.A be a unitalx-algebra and let be a regular(algebrg automorphism
of A. Let /" be anN-dimensionalclosed twisted graded trace on &-differential calculus
(£2,d) over A, and suppose that its twist automorphism extemdket ¢ be the twisted
cyclic N-cocycle associated tf, so thatp € ZY (A, o). Theng is self-adjoint if and only
if, [ is self-adjoint.

4. Twisted cyclic conomology

In this section, we briefly consider the twisted cyclic cohnomology theory of g dais ),
whereA s a unital algebra anglis an automorphism od. We shall be particularly interested
in the construction of analogues of the important opera&arsdB occurring in the classical
cyclic cohomology theory. These are used to relate twisted cyclic cohomology to twisted
Hochschild cohomology. We begin by defining the latter. Note that & C"(A), then
Wt o)(ao, ..., an) = @(o(ag), ..., o(ay)), for all ag, ... ,a, € A. Let C*(A, o) =
®neNC" (A, 0), whereC" (A, o) = {p € C"(A)|A"T1p = ¢}. One can show that, far €
C"(A), we havebr 1y = 1"+2pp andb’A" 1y = 1" +2p/¢. It follows thatC* (A, o) is
invariant forb andb’ and therefore we get a cochain comp{€% (A4, o), b). We denote its
cohomology byHH (A, o) and call it thewisted Hochschild cohomologythe pair(A4, o).

We shall now get the twisted cyclic cohomology as the cohomology of the total complex
of a bicomplex. To define this bicomplex we introduce the opendtof degree zero on
C*(A, o), defined, forp € C"(A, o), by settingNg = >7_jAp. One can show that
bN = Nb" and(1 — A)b = b’(1 — A) andN(1 — 1) = 0. Hence, folC" = C"(A, o), the
following diagram defines a bicomplex

bt bt bt D%

cc ¥ 2 A 23 2 &
bt -b'4 by b}
ct ¥ ¢t 8 ¢t B o B
bt bt bt b
co B ¢ 8 oc0o B 0 B

We denote this bicomplex lg** (A, o) and its total complex by * (A, o). The entry in the
bicomplex at the positiotm, n) isC™" (A, o) = C"(A, o). We denote the cohomology of
T*(A, o) byHC*(A, o). We shall see that thisisisomorphidHg (A, o). The advantage of
this alternative description is that it enables us to define the ope&dadB in a natural way.
We define a cochain map from the complexC; (A, o) to the complexT*(A, o) by
mappingx in C} (A, o) onto(x, 0, ...,0)inT"(A, o) = ®}_,C"" (A, o). Thenone can
show that the induced linear map, : H} (A, o) — HC*(A, o), is an isomorphism.
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We now defineC*z*] to be the cochain bicomplex obtained fr@ii* (A, o) by restricting
to the first two columns and setting all other columns equal to zeroTﬁ@A, o) be
the total complex otfz*]. We define a cochain map from sz] (A, o) to C*(A4, o) by
settingd (x) = x, for x in T?z] (A, o) = CO(A4, o) and setting (xo, x1) = xo, for (xo, x1)
in sz (A,0) = C'(A, 0) ® C"1(A, o), wheren > 0. The induced map, mapping
H*(T[Z] (A, o)) to HH*(A, o), is an isomorphism.

Now we define a cochain map of degree 2101{.A, o) by shifting its chain bicomplex
two columns to the right; more precisely,if = (xg, ..., x;) € T"(A, o), setR(x) =
(0,0, xp, ..., x,). Let P be the degree zero cochain map frdm(A, o) to TFZ] (A, o)
obtained by projecting; more preciseB(x) = x for x € TO(A4, o) andP(x) = (xo, x1),
forx = (xo,...,x,) € T"(A, o), wheren > 0. This gives a short exact sequence of
cochain maps

0— T*(A o) ST* (A o) 5Ty (A o) — O.

On the cohomological level we therefore get an exact triangle

H*(Tiy (A, 0)) 9, H"(T*(A, o))
p. "\ o
H(T*(A,0))

Finally, we define the linear maps H; (A, 0) — HH*(A,0),S: H}(A,0) — H (A, o)
andB : HH*(A,0) — Hj(A, o) of degrees 0, 2 and-1 respectively by setting =
0,P.m,, S= 'R, andB = 71961, This gives us an exact triangle

HH'(4,0) 2 Hi(Ao)

1\ /s
Hi(A,0)

By expansion of this we get a long exact sequence

o H2(A, 0) SHI (A, 0) S HH (A, 0) S HI YA, 0) SH (A, 0) — - -

Thus, we have indicated how the principal results of the elementary theory of cyclic co-
homology extends to the twisted case. Since the proofs in this more general setting are
essentially the same as in the non-twisted case, we have omitted the details.

5. Left-covariant differential calculi

Differential calculi that are left-covariant are of prime importance for the theory. We
shall introduce this concept now. For this we need to supposedhiatendowed with a
co-multiplicationA making the paif.A, A) a Hopf algebra (such an algebra is unital by
assumption). In the sequel we shall use a number of elementary results about Hopf algebras
without explicit reference. A good general source for this materidl]is
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Recall that a left-covariant bi-module ovdrd is a pair(I", Ar), wherel is a bi-module
overA, andAr is a linear map fronT” to A ® I" such that the following conditions hold:

1) Aidr)Ar = (idg ® Ar)Ar and(e® idp)Ar = id, where e is the co-unit of
(A, A), (thatis,Ar is a left coaction);
(2) Ar(ayb) = A(a)Ar(y)A®), forally € I' anda, b € A.

Note that(I", Ar) is a left. A-comodule (see e.¢4, 1.3.2 Definition 7). Later on, we
will use the Sweedler notation for such left comodules as explaingd 3.2 Eq. (60)]

An elementy € I is said to beeft-invariantif Ar(y) = 1® y. We denote by " the
linear space of left-invariant elements i6f

If a € Aandf is alinear functional o4, we setf xa = (idyg ® f)A(a). We shall
make use of the following result from the theory of left-covariant bi-modules.

Theorem 5.1 (S.L. WoronowicZ8,10]). Let(I", Ar) be aleft-covariant bi-module over a
Hopf algebra(A, A).

(1) There is a unique isomorphism of leftmodules fromA ® '™ onto I" that maps
a®yontoay,foralla e Aandy € '™, _

(2) Suppose that the family of elemefit9;¢; is a linear basis fod™"™. Then itis a free left
A-module basis fof” and also a free rightd-module basis of . Moreover there exist
linear functionalsfjk on A, for all j,k € I, such thatfix(ab) = ) ;.; fii(a) fik(b)
and fix(1) = dj and for which we have the equatiopsa = Y., (fji * a)y; and
ayj =Y ic; vi((fik™1) * a), wherex is the co-inverse fo(A, A).

When we consider a sufn’;_; x; of a family (x;);c; of elements in a vector space
with no topological structure, it is understood that= 0 for all but a finite number of
indicesi € I.

Let (£2, d) be a unital differential calculus ovet such that/1 = 0. This is a bi-module
over A in a natural way. If the mapA, @ 2 — A ® 2, makess2 into a left-covariant
bi-module andid 4 ® d) A = Apd, andAg (a) = A(a), foralla € A, we call the triple
(£2,d, Agp) aleft-covariant differential calculusver(A, A). Amoment’s reflection, using
the fact that2 is generated as an algebra by the elemergad d:, wherea € A, shows
that only one such left action, can exist makinds2, d, Ag) a left-covariant calculus.
For this reason, we often speak of the left-covariant differential calquWlys/), omitting
explicit reference taA ;. Henceforth, we shall also often speak of the Hopf algetra
omitting explicit reference of the co-multiplicatiom.

The mapA, is automatically of degree zero, where we regdrg 2 as graded algebra
in the obvious way (its space éfforms is the tensor produet ® £2;).

The linear span of the sgt(A)(A®1) = {A(a)(b®1)|a, b € A}is equal tad® A (this
is true for any Hopf algebra). It follows from this that the linear spangf(£2)(A® 1) is
equal toA ® £2. _

We shall denote the linear space of left-invariasiorms of 2 by 2,"V.

Let A be any unital algebra (not necessarily the underlying algebra of a Hopf algebra).
In Section 2we introduced the universal differential algelgsa, d) over A (which is not
unital). But there also exists a universal unital differential algebra.dwend this is the one
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we will be working with in the rest of this paper. There exists a unital graded differential
algebra($2, d), for which 29 = A, that has the following universal property:dfis a
unital algebra homomorphism from into the algebra2g of 0-forms of a unital graded
differential algebr&s2, d), then there exists a unique unital algebra homomorphigram
2 to 2 extendings such thatd = dé. This property uniquely determing€, d) (up to
isomorphism). Note thatl = 0.

We shall use the following useful property @2, d):

Letn be a non-negative integer afida multilinear map from4"*1 to a linear spac#

such thatl' (ag, ..., a,) = Q if any of the elements,, ..., a, is a scalar. Then there is a
unique linear mag@" from £2,, to Y for which T'(ag das - - - da,) = T(ao, a1, ..., a,), for
allag, a1, ..., a, € A.

Theorem 2.Temains valid fors2, d) in place of($2, d), providedog is assumed to be
unital.

If (A, A) is a Hopf algebra, then the universal unital calcu(s, d) over A is a
left-covariant calculus ovetA, A). To see this, first observe that ® £ can be made
into a differential calculus, where jd® d is its differential. The map\, regarded as an
algebra homomorphism from to the 0-forms of4 ® £2, extends to an algebra homomor-
phismA’ from 2 to A ® 2 such thatA’d = (id4 ® d)A’. It now follows from the next
lemma thai( A, d, A) is a left-covariant differential calculus oved, A).

Lemmab.2. Let(£2, d) be a unital differential calculus over a Hopf algeb¢d, A) such
thatd1l = 0 and suppose thal,; : 2 — A ® £2 is an algebra homomorphism extending
A:A— A® Asuchthat(idg ® d)Ao = Apd. Then($2,d, Ap) is a left-covariant
differential calculus

Proof. We have to prove thald ® idp)Ap = (Idg ® Ap)Ap and(e®idp)Ap = idg,

where e is the co-unit @f4, A). We shall prove only the first of these equations; the proof of

the second is straightforward. Sinc¢®ido) Ae and(id 4 ® A ) A are homomorphisms

ands? is generated as an algebra by the fornasmd d:, wherea € A, we need only see that

these homomorphisms are equal at such forms. This is obvious in the case of the elements
a, sinceAg(a) = A(a). For du we have

(A®ide)Agd(a) = (A®ide)([dg ® d)A(e)=(d4 ®id4 ® d)(A ®id4)A(a)
=(dg®idg®@d)(i[dy ® A)A(a) = (idyg ® Agd)A(a)
=(dg ® AR)([d4 @ d)A(a) = (Idg @ Ap)Apd(a).

This proves the lemma. |

Recall that a linear functiondl on a Hopf algebrad is said to beleft-invariant if
(id®h)A(a) = h(a)l, foralla € A, where 1is the unit ofl. Similarly, a linear functional
k' on A is right-invariantif (2’ ® id)A(a) = h'(a)1, for alla € A. Such functionals do
not necessarily exist. It is easily seen that there is at most one unital linear fundtional
on A that is both left and right-invariant. We call such a function&laar integral of .A.
In the sequel, we shall be principally interested in working with Hopf algebras that admit
Haar integrals. 1f4 is the Hopf algebra associated to a compact quantum group in the sense



586 J. Kustermans et al./ Journal of Geometry and Physics 44 (2003) 570-594

of Woronowicz, then it admits a Haar integral. From the point of view of relevance of the
theory we are developing here, the Hopf algebras associated to quantum groups are those
of prime interest.

We say that a linear functiongl on a left-covariant differential calculus2, d) over a
Hopf algebrad is left-invariantif (id4 ® [)Ag(w) = (f @)1, for allw € 2, where 1 is
the unit of A.

Clearly, the restriction of to A is a left-invariant linear functional onl; however, it
may be equal to zero oA (this is frequently the case).

Theorem 5.3. Let [ be a linear functional on a left-covariant differential calcul(@, o)
over a Hopf algebrad. Suppose also thad admits a Haar integrak. Then the following
are equivalent conditions:

(1) [aw =h(a) [ w,foralla e Aandforallw e 2,
(2) [ is left-invariant

Proof. Assume first thayf is left-invariant and suppose thate A andw € 2™ Since
h(1) = 1,wehavef aw = h((f aw)l) = h((i[d4® [)Ag(aw)) = (h® [)(A(a)(1Qw)) =
J((h®id ) A(a)w = [h(a)w = h(a) [ w. Hence, Condition (2) implies Condition (1).
Now suppose that Condition (1) holds, and detind w be as before. We may write

Aa) = Zi"il b ®c;, for some elements andc; in A. Then(id 4 ® [) (A g (aw)) = (Id4®
DA@ASW) = (da® NN b ®cio) = XM (f ciwo)bi = Y23 he) ([ 0)b; =
(id4a ®h)(A(a)) [ @ = h(a)(f ®)1 = ([ aw)l. Sinces2 is the linear span of the elements
aw, it follows that [ is left-invariant. Hence, Condition (1) implies Condition (2). O

Itis a well-known and useful result thatiifis a left-invariant linear functional on a Hopf
algebrad andk is the co-inverse onl, then

k((ida @ ) (A@ (A ® D)) = (ida @ (1@ a)AD)),

for all elementsa,b € A. We show now that a corresponding such result holds for
left-invariant linear functionals on a differential calculus.

Theorem 5.4. Let (2, d) be a left-covariant differential calculus over a Hopf algebfa
and let be a left-invariant linear functional os2. Then

K<(id,4 ® / ) Ao @1 ® ) = (idA ® / ) (18 @) Ag (@),

for all w, @’ € £2, wherek is the co-inverse aofl.

Proof. Using the Sweedler notation for left-comodules (sept, 1.3.2 Eq. (60)), we get
thatAp (w)(1Q ') = Y w—1) @ woyw'. Applying id4 ® A, to the right hand side of this
equation, the leftd-comodule property of2 guarantees thaf_ w_1) ® A (w@e') =
Y02 ® 01w _g) ® W@ If we apply ids ® id4 ® [ to this equation and use the
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left invariance of/, we see that
(s [ ) aa@ason o

= <Z o(-1) / a)(o)a)’> ®1l=) w2 ®w-1no_y / @(0)®(g)-

By applyingm (x ® id 4) to this equation and using the equalitieg« ® id 4)A = e(-) 1
and(e®idp)Ap = idg, thisimplies

c ((id A® [ > (Ap@)(1® a/)))

= ZK(W—Z))“’(—l)le) / w©)w(g = Ze(“%—l))wﬁfl) / 0/
=2 % / e(@(-1)wO w0 = ) @1 / walg,

= <idA®/> (1@ w)Ag(@)). -

Theorem 5.5. Let(£2, d) be a left-covariant differential calculus over a Hopf algebfa
admitting a Haar integral:. Then the linear mapP : 2 — £, defined by setting® =
(h®idgp)Ag, is idempotent with image equal 2'™; alsg, P (w1wwy) = w1 P (w)ws, for
all o € 2 andwy, @, € 2™. Moreover Pd = dP. If [ is a left-invariant linear functional
onf2,thenf P(w) = [w,forallw € 2.

Proof. Itis clearthatP (w) = wforallw € Q™. If win 2, thenP(w) = > h(w-1))®)-
Hence, using the left invariance bfin the second equality, we see that

Ag(P() =Y h(o 2oy ®wo = Y 18 h(w1)oo =18 P(w),

henceP (w) € 2. It follows thatP2 = P andP(£2) = 2!,

Now suppose that is an arbitrary form of2 and thatws, w, € 2"V, ThenP (w1wwy) =
(h®ide)(1® w1)Ag(w)(1® wz)) = w1(h ® ide)(Ag (w)wz = w1 P(w)ws.

We also havePd(w) = (h ® idp)Agd(w) = (h ® ido)(idy @ d)Ag(w) = dh ®
idp)Ap (w) = dP(w). Hence Pd = dP.

Suppose now/ is a left-invariant linear functional o2. Then [ P(w) = [(h ®
id)Ae@) =" ® [)Agw) =h((idg® HAg () =h((fw)]) = [o. U

If " andw are invariant elements a2, then [ w'aw = h(a) [ @', since[ w'aw =
[ P(waw) = [ P(@)w = h(a) [ o o.

Corollary 5.6. The linear space oV-dimensional, left-invariant linear functionals aR
is linearly isomorphic to the linear dual a2y". Hence 2 admits a unique non-zero
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N-dimensional, left-invariant linear functional, up to a non-zero scalar factor, if, and only
if, dim(2y) = 1.

Proof. Itfollows directly from the theorem that he restriction mgip—~ fg}\r,w, is the linear
isomorphism of the preceding statement. Surjectivity of this map is the only non-obvious
point. This is seen by observing that1fis a linear functional or2}", then we can
define the corresponding linear functional ghby setting /@ = 0, if w is ak-form

for which k < N, and by setting/ @ = tP(w), if ® € 2y. Then ifa € A and

w € .Q}{,‘V, and if A(a) = Zf‘ilbi ® c;, for some elements; andc; belonging to

A, we have(id4 ® [)(Ag(aw) = (ids ® NA@A® w) = XM t(P(cHw)b; =

Ziﬂil h(ci)t(w)b; = (idg ® h)(A(a))T(w) = h(a)t(w)1 = TP(aw) = ([ aw)1. Hence,

by Theorem 5.1/ is left-invariant. O

A Haar integralz on a Hopf algebrad is necessarilyeft faithful in the sense that,
whenevew is an element of4 for whichz(ba) = 0, for all b € A, we must have = 0.

Theorem 5.7. Let [ be a non-zerpleft-invariant linear functional on a left-covariant
differential calculus($2, d) over a Hopf algebra4 admitting a Haar integrah. Then | is
weakly faithful.

Proof. Suppose that € A and that/ wa = 0, for allw € 2. Since[ # 0, we may
choosew such that/ w # 0. Then, for allb € A, we have 0= [wba = [ P(wba) =
[ P(w)h(ba) = ([ w)h(ba). It follows, from faithfulness ofz, thata = 0. Hence,[ is
weakly faithful. O

Theorem 5.8. Let(£2, d) be anN-dimensional left-covariant differential calculus over the
Hopf algebraA admitting a Haar integrah. If (£2, ) admits a left faithful, left-invariant
N-dimensional linear functionaf, thendim(2y") = 1.

Proof. Let w be an invariantV-form of §2 for which [w = 0. If a € A, then [aw =
h(a) [ @ = 0. It follows, by faithfulness off, thatw = 0. Therefore, the linear map,
[ @IV — C, is injective. Since[ is non-zero and left-invariant, this restriction map
cannot be the zero map. Hence, it is a linear isomorphisrﬂ}@‘f onto C. Therefore,
dim(21V) = 1, as required. O

Corollary 5.9. The functionalf is closed if, and only jfd(Q}{,“il) =0.1If [isclosed, itis
necessarily a twisted graded trace

Proof. First observe thatiP = (h ® ido)Age, anda € A andw € 2V, then [ (da)w =
[ P((da)w) = [ P(da)w = [(dP(a))w = 0, sinceP(a) € Cl andd1l = 0. Hence,
[d(aw) = [adw + [(da)w = [adw. Using the identification2y_1 = ARy ,, it
follows from this observation that #(£21V ) = 0, then[d = 0; that is, [ is closed.
Suppose now conversely thAis closed and leb € 21V .. Then 0= [ d(aw) = [ a dw,
for all a € A. By faithfulness off, d(w) = 0. Henced(Qj{,“il) = 0, as required.
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Now suppose thaf is closed and we shall show it is a twisted graded trace. Choose
any non-zero elemertin 21V for which /6 = 1; then2V = Co. Sincedd = 6.4,
by Theorem 5.1there is a unique automorphism of A such thaba = p1(a)é, for all
a € A. Also, the Haar integrat admits another automorphispa of A such thati(ba) =
h(p2(a)b), for alla, b € A. Setop = pop1. Then [bba = [bp1(a)f = h(bpi(a)) =
h(p2p1(a)b) = [ oo(a)bb. It follows from Theorem 2.2hat [ is a twisted graded trade.

We say that anv-dimensional differential calculu&?, d) over a unital algebrad is
non-degeneraté, wheneverw is ak-form in £2 for whichw'ew = 0, for all o’ € 2y,
we necessarily hawe = 0. Itis clear that if2 admits a left faithful N-dimensional linear
functional, thens2 is non-degenerate.

Theorem 5.10. Let(£2, d) be a non-degenerat&/-dimensional, left-covariant differential
calculus over a Hopf algebral admitting a Haar integrah. Theng2 admits a left faithful
left-invariant N-dimensional linear functional jand only if dim(.Q}(,“’) =1.

Proof. The forward implication follows fromCorollary 5.6 Suppose conversely
dim(£2}") = 1. Then, byCorollary 5.6 £2 admits a non-zeray -dimensional, left-invariant
linear functional/” (unique up to multiplication by a scalar factor). To prove the theorem,
we have only to show now thdt is left faithful. Thus, we must show thatdf € £2 and
[&'w=0,foralle’ € 2,thenw = 0. We may clearly suppose, without loss of generality,
thatw € £, for some indext < N. Thenifo’' € 2y_i, We havew'w = af, for some
elementz € A. Hence, ifb € A, [ bo'w = 0, by assumption. Hencé(ba) = 0, for all

b € A. By faithfulness oft, a = 0. Thereforew’w = 0. We now use non-degeneracy of
£2 to deduce thab = 0, as required. |

Woronowicz has constructed a certain non-degenerate, left-covariant, three-dimensional
calculus($2, d) over the Hopf algebral underlying the compact quantum group 3B),
whereg is a real parameter for which@ |¢| < 1. For this calculus.Q‘lnV has a linear basis
wo, w1, w2 for which Aw; = w; A, fori = 0, 1, 2. Hence, for each index there exists an
automorphisnp; of A such thatw;a = p; (a)w;, for alla € A.

Since SUY(2) is a compact quantum group, it admits a Haar integraAlso, there is
an automorphismp of A such thati(ba) = h(p(a)b), for all a,b € A. We define a
one-dimensional, left-invariant linear functiorfabn §2 by setting/ apwo+a1w1+axwy =
h(a1) + h(a2). This functional is closed. To see this, observe first that there exist linear
functionalsxo, x1, x2 on A such thatd = ZiZ:O(Xi * a)w;, foralla € A. Sincedl =
0, we havey;(1) = 0, for all i. Using this, and right-invariance df, we get [ da =
h(x1*a) + h(x2*a) = h(a)x1(1) + h(a)x2(1) = 0.

We claim now thaff" is not a twisted graded trace. Otherwise detenote its twist auto-
morphism. Therf wa = [ o (a)w, forallw € $21. Therefore, fou, b € Aandi = 1, 2, we
haveh(pp;(a)b) = h(bpi(a)) = [bpi(a)w; = [bwia = [o(a)bw; = h(c(a)b). Faith-
fulness ofs now implies thatop; (@) = o(a), for alla € A. Hence, o1 = p2. But if o, y
are the canonical generators of 82) as in[8], thenpi(a) = ¢ %« andp2(a) = ¢~ 1e,
by Table 1 of[8]. Hence,p1 # p2. This contradiction shows that, as claimgdis not a
twisted graded trace.
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We now truncate Woronowicz’s calculus to get a one-dimensional differential calculus
(£2’,d") overA. Then(£2’, d") is anon-degenerate, left-covariant, one-dimensional calculus
over A, andwo, w1, w2 is a linear basis for the space of invariant 1-forms.

The restriction/” of [ to £’ is a closed, left-invariant, one-dimensional linear functional
on$2’. As we saw is the case fgh, the functional/” is also not a twisted graded trace. This
shows that the faithfulness hypothesislimeorem 5.10s necessary.

Lemma5.11. Let [ be a left-invariant twisted graded trace on the universal unital differ-
ential calculus($2, d) over a Hopf algebrad admitting a Haar integrah. Let be the left
kernel of [ and letJ = I N £2"™. Then the linear map froml ® J to I that sends: ® w
ontoaw is an isomorphism of lefl-modules. Hencd is invariant underA s in the sense
thatAs (1) C AR 1.

Proof. Letw € I; using the identification oft ® 2™ with 2, we write, as we mayy =
Zi"ilaia)i, whereay, ..., ay are linearly independent elements 4f andws, ..., oy
are left-invariant elements a. SetX = {(h(bay), ..., h(bay))|b € A}. We claim that

X = CM. Suppose otherwise (and we shall obtain a contradiction). Then there exists a
non-zero linear functionat on CM such thatr(x) = 0, for all x € X. Clearly, t is
determined by scalagsy, ..., uy, in the sense that(A1, ..., Ay) = Zi"il A, for all

M, ..., Ay € C. Moreover, sincer # 0, the scalarg:; are not all equal to zero. Now
letb € A Thenh(b(X 1L, wiai)) = Y1, wih(ba) = t(h(ba), ..., h(bay)) = O.
Hence,>" | ja; = 0, by faithfulness ofr. This contradicts the linear independence
of the elementsuy, ..., ay. Consequently, to avoid contradiction, we must have=
CM . |t follows that there exist elements, ..., by € A such thath(b;a;) = &, for
i,j =1,..., M. Hence, for any invariant elementin £2, we have, since» € I, 0 =
S [nbjaior = M h(bja;) [noi = [ no;. Therefore, for any element € A,
[anwj = h(a) [ nw; = 0. Consequently, the form; belongs ta/ and therefore, since it
is left-invariant, it belongs td'. The lemma now follows. O

Theorem 5.12. Let /* be anN-dimensional, left-invariant, closed twisted graded trace
on the universal unital differential calculug2, ) over a Hopf algebrad admitting a
Haar integral k. The N-dimensional differential calculu§?, d) associated tas$2, d, f/)

is left-covariant and the canonical twisted graded trgcen (2, d) is left-invariant

Proof. Let¢ be the canonical algebra isomorphism fran® 2 onto the quotient algebra
(AR 2)/(A®1) obtained by mapping® (w+1) ontoa @ w+.AQ1, foralla € Aandw €
2. Thenthemapjp : 2 - A®12, defined by settinglo (w+1) = ¢~ H(Az0+ARI),
for all w € £2, is a coaction makings2, d) left-covariant. This follows from the readily
verified facts thatA, is an algebra homomorphism extending the co-multiplicatiopdon
and that(idy ® d) Ao = Agqd.

To see thaif is left-invariant, letw € 2 and suppose that s (w) = M a4 ® w;, for
some elements; in A and formsw; in £2. Then
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<idA®f> Ag@+1) = <idA®/> (éai@)(wi-l—l))

M

£ (Jue)e-E(f )

i=1

/ /
=<idA®/)(A_@a))z(/w>1=</w+l>1.
Thus, [ is left-invariant, as required. O

Let A be a Hopf algebra andl the quotient linear spacd/C1 with corresponding
quotient mapr : A — A/C1. Fora € A, seta = n(a) € A. Define the left coactiom of
A on A by settingA(r(a)) = (id4 ® 7)A(a) for all a € A. Define the left coactiom y
of Aon A® A®" as the tensor product left coactign® A®N (see[4, 1.3.2 Eq. (61)for
the tensor product of two right coactions and adapt it to left coactions in the obvious way).

If @ : AN+L 5 Cisamultilinear function that vanishes on any elem@sptas, ..., ayn),
whenever any of the components . . ., ay belongs taC1, we letg be the corresponding
linear map ond ® A% (sothatp(ap® a1--- ® ay) = ¢(ao, ..., an)). We say thap is
left-invariantif (id 4 ® ¢)An(c) = ¢(c)1, forallc € A® 21®N, where 1 is the unit ofd.

Suppose now thap is the twisted cyclic cocycle associated Andimensional, closed
twisted graded tracg on §2, for some left-covariant differential calculy, d) over A. A
straightforward calculation shows that

<id ® /) (Aap)Agd(ar) --- Agd(an)) = ((d Q@ @)(AN(ao ® a1 ® - - - Q ay)),

for all elementsig, a1, ..., ay € A. From this it follows easily thaf is left-invariant if,
and only if,¢ is left-invariant.
We summarize our observations here in the following result.

Theorem 5.13. Suppose thats2, d) is a left-covariant differential calculus over a Hopf
algebra.4 and that [ is an N-dimensional closed, twisted graded trace @n Let ¢ be
the corresponding twisted cycli§-cocycle. Then/ is left-invariant if, and only if ¢ is
left-invariant

6. A construction of athree-dimensional differential calculus

In this section, we indicate how our construction of a differential calculus from a closed
twisted graded trace on the universal unital differential calculus can be used to show the
existence of a three-dimensional calculus first constructed by very different means by
Woronowicz.

First, recall that the universal unital differential calculi?zsover a Hopf algebra4 is
left-covariant. Lek be the co-inverse od, and denote by: the linear map fromd ® 2
to §2 that sends the elementary tenao® » onto the productw. Define the linear map
w from A to 2"V by settingw(a) = m(x ® d)A(a). If the unit 1 of A and the family
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(ei)ies form a linear basis for, then, for each positive integér the products of the form
w(ei,) - - wle;), Whereiq, ..., i, € I, form a linear basis of?,'{”" [10, Section 5 and 4,
Section 14.3.2]

If A is a Hopfsx-algebra, then2 is a x-differential calculus overd, wherew(a)* =
—w(k(a)*), foralla € A.

Suppose now that is a non-zero real parameter for whigh < 1. We denote by, the
Hopf algebra associated to the compact quantum groyagBU8]. Recall that4, is the
universal unitak-algebra generated by a pair of elemant@ndy satisfying the relations

afa+y*y =1, aa* +q¢%yy*=1,
Yy =yy*, ay=gqya, ay*=gy*a.

The co-multiplicationA on A, is the unique unitak-homomorphism for whichi (@) =
aQa—qgy*@yandA(y) =y Qo +a*Qy.

LetE = (Z x N x N)\ {(0, 0, 0)}. Fore = (k,l,m) € E, denote by, the product
o*y!(y*)". Here we use the usual convention in this context that far0, of = (a*)*.
Itis well-known that these elements, together with 1, form a linear basis fal;, . Writing
w, for w(a,), it follows that the product®,, w,w,, form a basis fo@:i_;”", that we shall
call thestandardbasis of2".

Again suppose that = (k, 1, m). We setc(e) = 0 if [ or m are positive and we set
ce) =cltk)y =1—q¢g %A —-¢>Lifl =m = 0. If wis a standard basis element,
W = We We, Wey, WE Selc(w) = c(e1) + c(e2) + c(€3).

We shall say that is reducedif (k,7) = (0, 1), (0,0) or (1, 0); in this case we set
t(e) = —1, 0, or 1, respectively, and we calk) thetypeof ¢.

We shall say that a standard basis elemert w,, w,,w,, is reduced if all the factors
have reduced indices and their types are distinct. We(e8t= (¢ (¢1), ¢ (e2), t(£3)).

Using Theorem 5.3we define a three-dimensional left-invariant linear functiohain
the universal unital differential calculu® over A4, by setting [ equal to zero on all of
the non-reduced standard basis elements, and by definolga reduced standard basis
elementw = w,, we, w,, as follows:

(1) ifr(w) =(-1,0, 1), [ ® = c(w);

() ift(@) = (=1, 1, 0), [0 = —g*c(w);
@3) if t(w) = (0, =1, 1), [ @ = —g*c(w);
4) if t(w) = (0, 1, =1), [ @ = q%(w);
(5) ift(w) = (1, =1, 0), [0 = ¢ (w);
(6) if t(w) = (1,0, -1), [ @ = —¢'%(w).

Using the formulaw(a)* = —w(k (@)*), itis not that hard to prove that the functional
is self-adjoint.

Letog be the twist automorphism associated to the Haar measamel,;; thatis oo is the
unique automorphism oA, for whichh(a’a) = h(oo(a)a’), for alla, a’ € A,. Letoy be
the unique automorphism o#, for whichoy(a) = ¢ =%, 01(y) = ¢y, 01(e*) = ¢*a*
ando1(y*) = ¢*y*. (This automorphism exists as a consequence of the universal property
enjoyed byA,). Finally, setoc = o071, of course is again an automorphism. Usifg,
14.3.2 Eq. (51)Jone checks thaf wa = [ o (a)w, for alla € A, andw € 23.
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Ifa e A, andA(a) =), b; @ ci, thendw(a)) = Y, wb)w(c;) [4, 14.3.2 Eq. (52)]
After a tedious case by case verification, this formula allows us to provd tisatlosed.

Fully detailed proofs of these facts can be foun{bh

Now one use§heorem 2.1to deduce thaf is a twisted graded trace. Moreover, the
twist automorphisna of [  extends the automorphissnof A,. We use these facts, and the
fact that/ is self-adjoint, to apply the construction 8&ction 2to the triple($2, d, /to
deduce the existence of a left-covariant, three-dimensieiwtferential calculus2 over
A,. We shall denote the canonical twisted graded trac&dsy the same symbof and
refer to the domains of these functionals to distinguish them in cases of ambiguity.

Let s denote the quotient map frof@ onto£2. It is easy to verify from the definition of
[ on$2 that,

(1) Forallk € Z, n(w(eX)) = ctk)m(w(@)), w(w(eky)) = m(w(y)) andr (w(aky*)) =
T(w(y*)),
(2) Forallk,l,m € Z for whichl, m > 0 andl +m > 2, we haver(w,;,m)) = 0.

Setwg = —qr(w(y")), w1 = m(w(w)) andwz = —g~1r(w(y)). It follows from Condi-
tions (1) and (2) thabo, w1 andwy linearly span2'™. It is immediate from the definition
of [ on 2 that

4 4
/ wowiw2 =1, f wowrw1 = —¢q", / w1wow2 = —q",

/ wrwpwo = ¢°, / wawowr = ¢°, / wpwwp = —q*° (6.1)

and thatf wjw;jw = 0,foreveryi, j, k € {0, 1, 2}, where any two of the indices j, k are
the same.

Since the tracg’ on 2 is left faithful, it follows easily thatwo, w1 andw; are linearly
independent and therefore that they form a linear basigft.

Leta andby, ..., by andey, ..., cy be elements itd, such thatA(a) = Zi"il bi ®c;.
Then, by Egs. (51) and (52) ¢4, 14.3.2] and the equatiow(a)* = —w(x(a)*), which
holds for alla € A,, we have

(1) 7(w(a)b =" biw(w(ac)), forallb e Ay;
() da =Y bim(w(c));
3) dr(w(@) = Y11, m(wB)m(w(c));

(4) wy =quw2, ©] = —w1, W5 = g two.

Applying these formulas in our particular case, it is easy to check that the differential
calculus($2, d) that we have constructed here satisfies the formulas in Tables 1, 2 and 6 of
[8]. Using faithfulness of on 2, combined with the formulas iig. (6.1) one can readily
verify that our differential calculus also satisfies the formulas of Table[8]adnd that the
three elementsowi, wowz andwiw, form a linear basis fof2)".

With this information at hand, it is now straightforward to conclude thatedifferential
calculus(£2, d) isisomorphic to the three-dimensional calculus constructed by Woronowicz
in [8] by an entirely different method.
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We believe that our method for constructing calculi is one that is perhaps more natural
than other methods, since the basis of our approach is essentially to devise a “presentation”
of the calculus in terms of generators and relations. It has the advantage over other methods
that after some tedious but basic combinatorical computations, the structure of the whole
space of differential forms is set up correctly.
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