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Abstract

We study some aspects of the theory of non-commutative differential calculi over complex alge-
bras, especially over the Hopf algebras associated to compact quantum groups in the sense of S.L.
Woronowicz. Our principal emphasis is on the theory of twisted graded traces and their associated
twisted cyclic cocycles. One of our principal results is a new method of constructing differential
calculi, using twisted graded traces.
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1. Introduction

A compact group is a compact space with a continuous multiplication satisfying certain
extra conditions. In the theory of compact quantum groups developed by S.L. Woronow-
icz [3,4,6,7,9], one replaces the compact space by a unital C∗-algebraA that is in general
non-commutative, and replaces the group multiplication by a co-multiplication onA satisfy-
ing certain cancellation conditions. Contained inA is a dense∗-subalgebraA, therepresen-
tationalgebra, that is a Hopf algebra under the restriction co-multiplication. BothA andA
admit a Haar integral and this is vital for many aspects of the theory we develop in this paper.

The considerations in this paper are motivated by the theory of compact quantum groups,
but it is not these objects that we study here; rather, we study differential calculi over such
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groups. Our context is therefore non-commutative differential geometry in the spirit of that
subject as developed by Alain Connes[2]. The study of differential calculi in the quantum
group setting was initiated by Woronowicz—indeed, he constructed the first example of
such a calculus[8]. However, it was immediately apparent in his work that Connes’ theory
of non-commutative geometry does not cover the calculi occurring in the quantum setting.
To explain briefly what is involved, recall that although the algebra of forms in the clas-
sical setting of differential manifolds is not commutative, it is “nearly” so, in the sense
thatωω′ = (−1)klω′ω, if ω andω′ are ak-form and anl-form, respectively. In Connes’
non-commutative geometry, it is no longer true thatωω′ = (−1)klω′ω. However, for a
graded trace (this is an appropriate kind of “integral” on the “non-commutative manifold”),
we have

∫
ωω′ = (−1)kl

∫
ω′ω, whereω andω′ are ak-form and anl-form, respectively.

This integral condition is of fundamental importance in the cyclic cocyle theory developed
so successfully by Connes in the past two decades. However, even this weaker commuta-
tivity condition does not hold in the context of differential geometry over quantum groups.
If one thinks of a graded trace as the analogue of a trace on a C∗-algebra, then one can
explain the situation in the quantum setting by saying that one must replace a trace by a
KMS state. More precisely, in this setting there is an automorphismσ of degree zero of
the algebra of forms such that

∫
ωω′ = (−1)kl

∫
σ(ω′)ω, whereω andω′ are ak-form

and anl-form, respectively. This is, of course, analogous to the situation with a KMS state
h on a C∗-algebra, where one has an automorphismσ on a dense∗-subalgebra for which
h(ab) = h(σ(b)a), for all elementsa andb in the subalgebra.

In his seminal paper on differential calculi over quantum groups[8], Woronowicz remarks
that the integral he defines on his three-dimensional calculus over the quantum group SUq(2)
does not fit into the framework of Connes’ non-commutative geometry, but he does not
develop this observation. In this paper, we introduce the concept of a twisted graded trace
(the analogue of a KMS state) to replace Connes’ graded traces. It is then necessary to
develop a theory of twisted cyclic cocycles and we do this here. One of our principal results
is a new method of constructing differential calculi; in essence, in this approach we start with
a twisted graded trace and construct a calculus (in Woronowicz’s approach one goes in the
opposite direction). We feel that our approach may be more natural, since, to some extent,
it involves giving a “presentation” of the calculus in terms of generators and relations.

We give a brief overview of the paper now. InSection 2we introduce the basic terminology
and prove two theorems that are very useful for constructing twisted graded traces. We also
introduce a quotient construction for obtaining a differential calculus from a twisted graded
trace. InSection 3we introduce twisted cyclic cocycles and develop their relationship with
twisted graded traces. In both this section and the next, we develop a theory of twisted cyclic
cohomology. This contains Connes’ theory as a special case, but, as we have indicated above,
the more general theory is necessary to deal with the examples that occur in the quantum
group setting. However, the theory developed inSections 2–4is not restricted to the quantum
group setting and applies in the more general context of differential calculi over arbitrary
unital algebras. InSection 5we develop aspects of the theory of left-invariant twisted
graded traces over left-covariant differential calculi. In this situation the underlying algebra
is assumed to be a Hopf algebra. An important result here is that the differential calculus
constructed from a left-invariant twisted graded trace on the universal calculus is shown
to be itself left-covariant. Also, we give a characterization of the twisted cyclic cocycles
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that correspond to left-invariant twisted graded traces. In the final section,Section 6, we
show how our ideas can be used to give an alternative construction of Woronowicz’s first,
three-dimensional, differential calculus over quantum SU(2).

2. Differential calculi

In this section, we set up the basic terminology for studying differential calculi over
algebras that are not necessarily commutative. One can think of this as the study of differ-
ential forms in the setting of quantum spaces or manifolds. We give a general procedure for
constructing such calculi. We begin by recalling some basic definitions.

Let Ω be a (positively) graded algebra,Ω = ⊕∞
n=0Ωn. A graded derivationonΩ is a

linear mapd : Ω → Ω for which d(ω′ω) = d(ω′)ω + (−1)nω′ dω, for all ω′ ∈ Ωn and
all ω ∈ Ω.

A graded differential algebrais a pair(Ω, d), whereΩ is a graded algebra,d is a graded
derivation onΩ of degree 1 (as a linear map) andd2 = 0. The elements ofΩ are referred
to as theformsof (Ω, d) and the elements ofΩn as then-forms. The operatord is referred
to as thedifferential.

Now suppose thatA is an arbitrary associative unital algebra. Then there is a graded
differential algebra(Ω̄, d), for which Ω̄0 = A, that has the following universal property:
If σ is an algebra homomorphism fromA into the algebraΩ0 of 0-forms of a graded
differential algebra(Ω, d), then there exists a unique algebra homomorphismσ̄ from Ω̄

to Ω extendingσ such thatσ̄ d = dσ̄ . This property uniquely determines(Ω̄, d) (up to
isomorphism). Note that̄σ is clearly necessarily of grade zero. We shall usually denote the
extensionσ̄ by the same symbolσ as the original homomorphism.

We shall use the following two useful properties of(Ω̄, d):

(1) Letn ≥ 1. Then every element of̄Ωn is a sum of elements of the forma0 da1 · · · dan,
and da1 · · · dan, where the elementsa0, a1, . . . , an belong toA;

(2) Let n be a positive integer andT1 a multilinear map fromAn+1 to a linear space
Y andT2 a linear map fromAn to the same linear spaceY . Then there is a unique
linear mapT̂ from Ω̄n to Y for which T̂ (a0 da1 · · · dan) = T1(a0, a1, . . . , an) and
T̂ (da1 · · · dan) = T2(a1, . . . , an), for all a0, a1, . . . , an ∈ A.

In practice, the universal graded differential algebra(Ω̄, d) is too big to be useful. How-
ever, it can be used to construct smaller, finite-dimensional differential algebras that are
useful.

A differential calculusoverA is a graded differential algebra(Ω, d) for which

(1) Ω0 = A;
(2) Letn ≥ 1. Then every element ofΩn is a sum of elements of the forma0 da1 · · · dan

and da1 · · · dan, where the elementsa0, a1, . . . , an belong toA.

If the differential calculusΩ is unital (as an algebra), then the unit ofΩ has to belong to
Ω0 = A and therefore has to be equal to the unit 1 ofA.

We shall say the differential calculus(Ω, d) is finite-dimensional, of dimensionN , if
ΩN �= 0 andΩn = 0 for n > N .
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The universal graded differential algebra is clearly a differential calculus overA, but it
is, equally clearly, not finite-dimensional, nor unital.

We now describe a general procedure for obtaining a new, “smaller” calculus from a
given calculus. LetN be a positive integer and let(Ω, d) be a differential calculus over
A that is either not finite-dimensional, or is of finite dimension greater thanN . We define
a new differential calculus(Ω ′, d ′) of dimensionN by settingΩ ′

k = Ωk, if k ≤ N and
Ω ′

k = 0, if k > N . We define the multiplication· in Ω ′ by setting, forω1 ∈ Ωk and
ω2 ∈ Ωl, ω1 · ω2 = ω1ω2, if k + l ≤ N , and by settingω1 · ω2 = 0 if k + l > N . We set
d ′(ω1) = d(ω1), if k ≤ N and setd ′(ω1) = 0, if k > N . We call(Ω ′, d ′) the differential
calculus of dimensionN obtained from(Ω, d) by truncation.

If (Ω, d) is a differential calculus overA, we say a linear functional
∫

onΩ is closed
if
∫
d = 0. If ω1, . . . , ωM ∈ Ω, then a simple induction shows that dω1 dω2 · · · dωM =

d(ω1 dω2 · · · dωM). Hence, if
∫

is closed,
∫

dω1 dω2 · · · dωM = 0. We shall frequently tac-
itly make use of this observation. Ifω is ak-form andω′ an arbitrary form, then

∫
(dω)ω′ =

(−1)k+1
∫
ω dω′, another result we shall use tacitly in the sequel. It follows from the fact

thatd(ωω′) = (dω)ω′ + (−1)kω dω′ and
∫
d(ωω′) = 0.

A linear functional
∫

onΩ is atwisted graded traceif there is an algebra automorphism
σ : Ω → Ω of degree zero for whichσd = dσ and

∫
ω′ω = (−1)kl

∫
σ(ω)ω′, for all

non-negative integersk andl and for allω ∈ Ωk andω′ ∈ Ωl .
We sayσ is atwist automorphismassociated to

∫
. It is useful to observe that

∫
σ(ω)= ∫ ω,

for all ω ∈ Ω. To see this, observe first thata = a1 and da = d(a1) = (da)1 + a(d1) for
all a ∈ A. It follows that any element ofΩ is a sum of products of two elements ofΩ. Let
ω,ω′ ∈ Ω. We may writeω = ∑

k ωk andω′ = ∑
k ω

′
k, whereωk, ω

′
k ∈ Ωk. Then

∫
ωω′ =∑

k,l

∫
ωkω

′
l = ∑

k,l(−1)kl
∫
σ(ω′

l )ωk = ∑
k,l

∫
σ(ωk)σ (ω

′
l )=

∫
σ(ω)σ(ω′)= ∫ σ(ωω′).

Theorem 2.1. Let (Ω̄, d) be the universal calculus over a unital algebraA. Suppose that∫
is a closed linear functional on̄Ω and thatσ0 : A → A is an algebra automorphism

for which
∫
σ0(a)ω = ∫

ωa, for all a ∈ A andω ∈ Ω̄. Then
∫

is a twisted graded trace
having a twist automorphismσ that extendsσ0.

Proof. The automorphism,σ0 : Ω̄0 → Ω̄0, extends uniquely to an automorphism,σ :
Ω̄ → Ω̄, for whichσd = dσ , by the universal property of(Ω̄, d). We shall show that

∫
is a twisted graded trace, withσ as its twist automorphism. Thus, to prove the theorem, we
have only to show that, for each positive integerN ,∫

ω′ω = (−1)k(N−k)

∫
σ(ω)ω′, (2.1)

for all integersk such that 0≤ k ≤ N , and for allω ∈ Ω̄k andω′ ∈ Ω̄N−k. We shall prove
this by induction onk. It clearly holds fork = 0 by hypothesis. Let’s assume it holds fork

and we shall prove it fork + 1, where we also suppose thatk + 1 ≤ N . We first show that∫
α dω = (−1)(k+1)(N−k−1)

∫
σ(dω)α, (2.2)

whereω ∈ Ω̄k andα ∈ Ω̄N−k−1. We suppose first thatk + 1 < N . If α = dω′, whereω′ ∈
Ω̄N−k−2, the closeness of

∫
implies that both sides of the above equation are 0 and hence
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equal. SinceΩ̄N−k−1 is the linear span of elements of the form dω′ and(dω′)a, whereω′ ∈
Ω̄N−k−2 anda ∈ A, we may now clearly suppose thatα = (dω′)a. We have

∫
(dω′)a dω =∫

dω′ d(aω) − ∫
(dω′)(da)ω = − ∫ (dω′)(da)ω = (−1)1+k(N−k)

∫
σ(ω)(dω′)da, by the

inductive hypothesis. Sinced(σ (ω)ω′) = (dσ (ω))ω′ + (−1)kσ (ω)dω′ = σ(dω)ω′ +
(−1)kσ (ω)dω′, we get∫

(dω′)a dω = (−1)1+k(N−k)(−1)k
[∫

d(σ (ω)ω′)da −
∫

σ(dω)ω′ da

]

= (−1)1+k(N−k)(−1)k+1
∫

σ(dω)ω′ da

= (−1)1+k(N−k)(−1)k+1(−1)N−k−2

×
[∫

σ(dω)d(ω′a)−
∫

σ(dω)(dω′)a
]

= (−1)1+k(N−k)(−1)k+1(−1)N−k−1
∫

σ(dω)(dω′)a

= (−1)(k+1)(N−k−1)
∫

σ(dω)(dω′)a.

This shows thatEq. (2.2)holds, as required, whenk + 1 < N . For k + 1 = N the
argument is similar, but much simpler, and is therefore omitted. It follows now fromEq.
(2.2) that, for alla ∈ A, we have∫

αa dω = (−1)(k+1)(N−k−1)
∫

σ(dω)αa

= (−1)(k+1)(N−k−1)
∫

σ0(a)σ (dω)α =
∫

σ(a dω)α.

This shows thatEq. (2.1)is satisfied fork in place ofk + 1. This completes our induction,
soEq. (2.1)is now seen to be true fork = 0, . . . , N . �

We say that a linear functional
∫

onΩ is left faithful if, wheneverω ∈ Ω is such that∫
ω′ω = 0, for allω′ ∈ Ω, we necessarily haveω = 0.

Theorem 2.2. Suppose(Ω, d) is a differential calculus over a unital algebraA. Suppose
that

∫
is a left faithful, closed linear functional onΩ and thatσ0 : A→ A is an algebra

automorphism for which
∫
σ0(a)ω = ∫

ωa, for all a ∈ A andω ∈ Ω. Then
∫

is a twisted
graded trace having a twist automorphismσ that extendsσ0.

Proof. The automorphism,σ0 : Ω̄0 → Ω̄0, extends uniquely to an automorphism,σ̄ :
Ω̄ → Ω̄, for whichσ̄ d = dσ̄ , by the universal property of the universal differential calculus
(Ω̄, d). Likewise the isomorphism, idA : Ω̄0 → Ω0, extends uniquely to a surjective homo-
morphism,π : Ω̄ → Ω, such thatπd = dπ . We define

∫ ′ onΩ̄ by setting
∫ ′

ω = ∫
π(ω),

for allω ∈ Ω̄. Clearly,
∫ ′ is a closed, linear functional on̄Ω satisfying the hypothesis of the

preceding theorem. Hence,
∫ ′ is a twisted graded trace, with̄σ as its twist automorphism.

Suppose now thatω ∈ Ω̄ andπ(ω) = 0. We shall show thatπ(σ̄ (ω)) = 0. If ω′ ∈ Ω̄,
then

∫
π(σ̄ (ω′))π(σ̄ (ω)) = ∫ ′

σ̄ (ω′ω) = ∫ ′
ω′ω = ∫

π(ω′)π(ω) = 0, sinceπ(ω) = 0. It
follows from faithfulness of

∫
thatπ(σ̄ (ω)) = 0, as required.
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We can now use this invariance of ker(π) underσ̄ to induce a homomorphismσ on
Ω defined by settingσ(π(ω)) = π(σ̄ (ω)), for all ω ∈ Ω̄. It is clear that

∫
ω′ω =

(−1)kl
∫
σ(ω)ω′, for all integersk andl and for allω ∈ Ωk andω′ ∈ Ωl . Clearly, sincēσ

extendsσ0, so doesσ . It is easily checked thatσd = dσ . Moreover,σ is surjective, since
σ̄ andπ are. Thus, to show that

∫
is a twisted graded trace withσ as twist automorphism,

we need only show now thatσ is injective. To see this, suppose thatω ∈ Ωk andσ(ω) = 0.
Then

∫
ω′ω = (−1)kl

∫
σ(ω)ω′ = 0, for all integersl and for allω′ ∈ Ωl . Hence, since

∫
is left faithful,ω = 0. Therefore,σ is injective, as required. �

If
∫

is a linear functional on a differential calculus, itsleft kernelis defined to be the set
of all formsω for which

∫
ω′ω = 0, for allω′ ∈ Ω. Obviously, the left kernel is a left ideal

of Ω. If the intersection of the left kernel of
∫

withA is the zero space, we say
∫

is weakly
faithful. Obviously,

∫
is left faithful if, and only if, its left kernel is the zero space; hence,∫

is weakly faithful if it is left faithful, as one would expect.

Theorem 2.3. Let
∫

be a twisted graded trace on a differential calculus(Ω, d) over a
unital algebraA.

(1)
∫

is weakly faithful if, and only if, for each elementa ∈ A for which
∫
aω = 0, for all

ω ∈ Ω, we havea = 0.
(2) If

∫
is weakly faithful, then

∫
admits exactly one twist automorphism.

Proof. First, suppose that
∫

is weakly faithful. Letσ be any twist automorphism of
∫

and
suppose thata ∈ A and that

∫
aω = 0, for all ω ∈ Ω. Then

∫
ωσ−1(a) = 0. Hence,

by weak faithfulness of
∫

, σ−1(a) = 0 and therefore,a = 0. This shows the forward
implication in Condition (1) and the reverse implication is shown by similar reasoning.

To see Condition (2) holds, letρ andσ be twist automorphisms for
∫

. Then, for all
a ∈ A andω ∈ Ω,

∫
(ρ(a) − σ(a))ω = ∫

ρ(a)ω − ∫
σ(a)ω = ∫

ωa − ∫
ωa = 0. Hence,

ρ(a) = σ(a). Using the fact thatρd = dρ andσd = dσ , it now follows immediately that
ρ = σ . �

LetN be a non-negative integer. We say that a linear functional
∫

onΩ isN -dimensional
if
∫
ω = 0, for all k-forms, wherek �= N .

Suppose now
∫ ′ is anN -dimensional, weakly faithful, closed twisted graded trace on a

differential calculus(Ω̂, d) overA and letσ̂ denote the twist automorphism of
∫ ′ . We are

going to construct a new,N -dimensional, differential calculus(Ω, d) from (Ω̂, d,
∫ ′

) and
a new,N -dimensional, closed twisted graded trace

∫
onΩ that is left faithful.

The twisted tracial property of
∫ ′ implies that, for each formω ∈ Ω̂, the condition∫

ω′ω = 0, for allω′ ∈ Ω̂, is equivalent to the condition
∫
ωω′ = 0, for allω′ ∈ Ω̂. Hence,

if I is the left kernel of
∫ ′ , it is not only a left ideal ofΩ̂, but is also a right ideal. We denote by

Ω the quotient algebrâΩ/I . It is trivially verified thatΩ̂n ⊆ I for all n > N and that ifω ∈
I , then itskth componentωk belongs toI also. It follows that ifΩk denotes the image of̂Ωk in
the quotient algebraΩ, thenΩ = Ω0⊕· · ·⊕ΩN . Moreover, this makesΩ into a graded alge-
bra. SinceI ∩A = 0, because

∫ ′ is weakly faithful, we may, and we do, identifyΩ0 withA.
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If ω′ ∈ Ω̂k andω ∈ I , then
∫ ′

ω′ dω = (−1)k+1
∫ ′

(dω′)ω = 0. This implies that
dω ∈ I . Hence,d(I ) ⊆ I and therefored induces a linear mapd : Ω → Ω. It is immediate
thatd is a graded derivation onΩ and, indeed, that(Ω, d) is anN -dimensional differential
calculus overA.

Since
∫ ′ clearly annihilatesI , we get an induced linear map

∫
onΩ. Also, it is clear that

σ̂ (I ) ⊆ I , so thatσ̂ induces an algebra automorphismσ onΩ. It is now easily verified that∫
is anN -dimensional, closed twisted graded trace onΩ with σ as its twist automorphism.
We call (Ω, d) the differential calculusassociated to(Ω̂, d,

∫ ′
) and

∫
the canonical

twisted graded trace onΩ. The significant gains resulting from this construction are that
(Ω, d) is finite-dimensional and that

∫
is left faithful.

It is straightforward to verify that if one starts with anN -dimensional differential calculus
(Ω, d) overA, and with a left faithful, closed twisted graded trace

∫
on Ω, then (up to

isomorphism) one can obtainΩ, d and
∫

by the preceding quotient construction from an
N -dimensional, weakly faithful, closed twisted graded trace

∫ ′ on (Ω̄, d).
The question now arises as to how we can obtain twisted graded traces on(Ω̄, d). We

shall see these arise from twisted cyclic cocycles. We shall discuss these objects and explain
their relationship with twisted graded traces inSection 3.

Suppose now thatA is a unital∗-algebra. We shall say that(Ω, d) is a∗-differential cal-
culusoverA if it is a differential calculus overAand ifΩ is endowed with a conjugate-linear
map, Ω → Ω, ω �→ ω∗, extending the involution onA, having the following
properties:

(1) (ω∗)∗ = ω, for all ω ∈ Ω;
(2) (ω1ω2)

∗ = (−1)klω∗
2ω

∗
1, for all ω1 ∈ Ωk andω2 ∈ Ωl ;

(3) d(ω∗) = (dω)∗, for all ω ∈ Ω.

We shall call the map,ω �→ ω∗, thegraded involutionof Ω. Notice that there is at most
one such graded involution.

A linear map,
∫

: Ω → C, is self-adjointif
∫
ω∗ = (

∫
ω)−, for all ω ∈ Ω.

The universal differential calculus(Ω̄, d) of a∗-algebraA is a∗-differential calculus in
a natural way. Suppose now

∫ ′ is anN -dimensional, weakly faithful, self-adjoint, closed
twisted graded trace on(Ω̄, d). LetI be its left kernel,(Ω, d) the associatedN -dimensional
differential calculus and

∫
the canonical twisted graded trace onΩ. ThenI is self-adjoint—

that is, if ω ∈ I , thenω∗ ∈ I—and (Ω, d) is a ∗-differential calculus overA, where
(ω + I )∗ = ω∗ + I , for all ω ∈ Ω̄. To seeI is self-adjoint, suppose thatω is a k-form
belonging toI . If ω′ is an(N − k)-form, then

∫ ′
ω′ω∗ = (−1)k(N−k)(

∫ ′
ω(ω′)∗)− = 0.

Hence,ω∗ ∈ I . This provesI ∗ ⊆ I . It now follows easily that the involution(ω + I )∗ =
ω∗ + I makes(Ω, d) into a∗-differential calculus overA. It is equally easy to see that

∫
is self-adjoint.

3. Twisted cyclic cocycles and differential calculi

Suppose thatA is a unital algebra. Forn ≥ 0, letCn(A) denote the set of all multilinear
maps fromAn+1 to C. SetC∗(A) = ⊕n∈NCn(A). ThenC∗(A) is a graded linear space.
There exists a unique linear map,b : C∗(A) → C∗(A), making(C∗(A),b) a cochain
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complex for which, forϕ ∈ Cn(A),

(bϕ)(a0, . . . , an+1) =
n∑

i=0

(−1)iϕ(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+(−1)n+1ϕ(an+1a0, a1, . . . , an).

TheHochschild cohomologyHH∗(A) ofA is defined to be the cohomology of(C∗(A),b).
Thus,HHn(A) = Hn(C∗(A),b) for all n ∈ Z (where we understand it to be zero ifn is
negative).

Thepermutation operatorλ onC∗(A) is the linear isomorphism of degree zero, defined
by settingλ(ϕ)(a0, a1, . . . , an) = (−1)nϕ(an, a0, a1, . . . , an−1), for n ≥ 0, ϕ ∈ Cn(A)
anda0, . . . , an ∈ A. SetC∗

λ(A) = ⊕n∈NCn
λ(A), whereCn

λ(A) = {ϕ ∈ Cn(A)|λ(ϕ) = ϕ}.
The coboundary operatorb leaves each spaceCn

λ(A) invariant and therefore its restriction
makes(C∗

λ(A),b) into a cochain complex. The cohomology of this complex is denoted by
H∗

λ(A) and called thecyclic cohomologyof A. Thus,Hn
λ(A) = Hn(C∗

λ(A),b).
It will be useful to recall also the degree 1 operatorb′ on C∗(A) defined by the formula

(b′ϕ)(a0, . . . , an+1) =
n∑

i=0

(−1)iϕ(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

for n ≥ 0 andϕ ∈ Cn(A). It is well-known that(b′)2 = 0 and that the cohomology of the
cochain complex(C∗(A),b′) is trivial, H∗(C∗(A),b′) = 0.

We generalize the definition of cyclic cohomology now. Suppose that(A, σ ) is a pair
consisting of a unital algebraA and an algebra automorphismσ : A→ A. We get a new
operator corresponding to the permutation operator, a linear isomorphismλ : C∗(A) →
C∗(A) of degree zero, by setting

λ(ϕ)(a0, a1, . . . , an) = (−1)nϕ(σ (an), a0, a1, . . . , an−1)

for n ≥ 0 andϕ ∈ Cn(A). We setC∗
λ(A, σ ) = ⊕n∈NCn

λ(A, σ ), whereCn
λ(A, σ ) = {ϕ ∈

Cn(A)|λ(ϕ) = ϕ}. We shall makeC∗
λ(A, σ ) into a cochain complex whose cohomology

will be a “twisted” version of ordinary cyclic cohomology. To this end we introduce new
operatorsc andb on C∗(A), both of degree 1. These are defined by settingb = b′ + c,
where, forϕ ∈ Cn(A), anda0, . . . , an ∈ A,

(cϕ)(a0, . . . , an+1) = (−1)n+1ϕ(σ(an+1)a0, a1, . . . , an).

Thus,b is a “twisted” version of the usual Hochschild coboundary operator. To see that
b2 = 0, one uses the fact that(b′)2 = 0 and proves the easily verified fact thatcb′ +
b′c + c2 = 0. As in the classical cyclic cocycle theory, one can show thatb′(1 − λ) =
(1 − λ)b. This immediately implies thatC∗

λ(A, σ ) = {ϕ ∈ C∗(A)|λϕ = ϕ} is invariant
underb. Hence, by restrictingb, we get a cochain complex(C∗

λ(A, σ ),b). We denote by
H∗

λ(A, σ ) the cohomology of this complex and call it thetwisted cyclic cohomologyof
(A, σ ). We denote byZn

λ(A, σ ) andBn
λ(A, σ ) then-cocyles andn-coboundaries for the

complex(C∗
λ(A, σ ),b). We call the elements of these spaces thetwisted cyclicn-cocyles

andn-coboundariesof (A, σ ), respectively.
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Clearly, if σ = idA, thenH∗
λ(A, σ ) = H∗

λ(A).

Theorem 3.1. Let (Ω, d) be a differential calculus over a unital algebraA and suppose
that

∫
is anN -dimensional, closed, twisted graded trace onΩ. Define the function, ϕ :

AN+1 → C, by setting

ϕ(a0, . . . , aN) =
∫

a0 da1 · · · daN .

Let σ be an automorphism ofA for which
∫
σ(a)ω = ∫

ωa, for all a ∈ A andω ∈ ΩN .
Thenϕ belongs toZN

λ (A, σ ).

Proof. We show first thatλϕ = ϕ. Let a0, . . . , aN be elements ofA. Then, since
∫

is
closed, and da0 · · · daN−1 = d(a0 da1 · · · daN−1), we have

λϕ(a0, . . . , aN) = (−1)N
∫

σ(aN)da0 · · · daN−1 = (−1)N
∫
(da0 · · · daN−1)aN

=
∫

a0(da1 · · · daN−1)daN = ϕ(a0, . . . , aN).

To show thatbϕ = 0, we shall use the fact that

N∑
i=1

(−1)i da1 · · · d(aiai+1) · · · daN+1

= (−1)N(da1 · · · daN)aN+1 − a1 da2 · · · daN+1, (3.1)

for all a1, . . . , aN+1 ∈ A (this is well-known, see[2, p. 187]). It follows from this equality,
and from the twisted tracial property of

∫
, that

bϕ(a0, . . . , aN+1) =
N∑
i=1

(−1)i
∫

a0 da1 · · · d(aiai+1) · · · daN+1

+
∫

a0a1 da2 · · · daN+1+(−1)N+1
∫

σ(aN+1)a0 da1 · · · daN

=
∫

a0((−1)N(da1 · · · daN)aN+1 − a1 da2 · · · daN+1)

+
∫

a0a1 da2 · · · daN+1+(−1)N+1
∫

a0(da1 · · · daN)aN+1=0.

The theorem is now proved. �

We callϕ the twisted cyclic cocycleassociated to(Ω, d) and
∫

.

Theorem 3.2. Letσ be an automorphism of a unital algebraA and letϕ ∈ ZN
λ (A, σ ), for

some integerN ≥ 0. Then there exists anN -dimensional differential calculus(Ω, d) over
A and anN -dimensional, closed twisted graded trace

∫
onΩ such thatϕ is the twisted

cyclic cocycle associated to(Ω, d) and
∫

.
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Proof. Define anN -dimensional linear functional
∫ ′ on the universal differential calculus

Ω̄ overA by setting
∫ ′

a0 da1 · · · daN = ϕ(a0, . . . , aN) and
∫ ′ da1 · · · daN = 0, for all

a0, . . . , aN ∈ A. By definition,
∫ ′ is closed.

Next we show that
∫ ′

ωaN+1 = ∫ ′
σ(aN+1)ω, for all aN+1 ∈ A and allω ∈ Ω̄. Clearly,

to show this, we may suppose thatω = a0da1 · · · daN or ω = da1 · · · daN , for some
elementsa0, . . . , aN ∈ A. Then, using the fact thatbϕ = 0 and therefore,b′ϕ = −cϕ, and
again usingEq. (3.1), we have∫ ′

σ(aN+1)a0 da1 · · · daN

= (−1)N+1cϕ(a0, . . . , aN+1) = (−1)Nb′ϕ(a0, . . . , aN+1)

= (−1)N
N∑
i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , aN+1)

= (−1)N
(

N∑
i=1

(−1)i
∫ ′

a0 da1 · · · d(aiai+1) · · · daN+1 +
∫ ′

a0a1 da2 · · · daN+1

)

= (−1)N
(∫ ′

a0((−1)N(da1 · · · daN)aN+1 − a1 da2 · · · daN+1)

+
∫ ′

a0a1 da2 · · · daN+1

)

=
∫ ′

a0(da1 · · · daN)aN+1.

In the other case∫ ′
σ(aN+1)da1 · · · daN = ϕ(σ(aN+1), a1, . . . , aN) = (−1)Nϕ(a1, . . . , aN , aN+1)

= (−1)N
∫ ′

a1da2 · · · daN+1 =
∫ ′

(da1 · · · daN)aN+1,

where we used the closeness of
∫ ′ and the aforementioned fact in the last equality.

It follows now that
∫ ′ is a twisted graded trace. Now let(Ω, d) be theN -dimensional

differential calculus obtained from̄Ω by truncation, and let
∫

be the restriction of
∫ ′ to

Ω. Clearly,
∫

is again a closed twisted graded trace andϕ is the twisted cyclic cocycle
associated to(Ω, d) and

∫
. �

If σ is an automorphism of a unital algebraA andϕ ∈ C∗
λ(A, σ ), we say thatϕ is

left faithful if, for each elementa in A, we havea = 0, if ϕ(aa0, a1, . . . , aN) = 0, for
all a0, . . . , aN ∈ A. Sinceλϕ = ϕ, we have, for each indexi = 0, . . . , N , a = 0, if
ϕ(a0, a1, . . . ,aai , . . . , aN) = 0, for all a0, . . . , aN ∈ A.

Theorem 3.3. Let σ be an automorphism of a unital algebraA and letϕ ∈ ZN
λ (A, σ ),

for some integerN ≥ 0. If ϕ is left faithful, then there exists anN -dimensional differential
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calculus(Ω, d) overA and a left faithfulN -dimensional, closed twisted graded trace
∫

on
Ω such thatϕ is the twisted cyclic cocycle associated to(Ω, d) and

∫
.

Proof. Define anN -dimensional linear functional
∫ ′ on the universal differential calculus

Ω̄ overA by setting
∫ ′

a0 da1 · · · daN = ϕ(a0, . . . , aN) and
∫ ′ da1 · · · daN = 0, for all

a0, . . . , aN ∈ A. We saw in the proof of the preceding theorem that
∫ ′ is a closed twisted

graded trace. The faithfulness assumption onϕ ensures that
∫ ′ is weakly faithful. Now let

(Ω, d) be theN -dimensional calculus associated toΩ̄ and
∫ ′ and let

∫
be the canonical

N -dimensional, left faithful, closed twisted graded trace onΩ. Thenϕ is clearly the twisted
cyclic cocycle associated to

∫
. �

To round off this circle of ideas, let us note that if
∫

is anyN -dimensional, weakly faithful,
closed twisted graded trace on a differential calculus(Ω, d) over a unital algebraA, the
associated twisted cyclic cocycleϕ is clearly left faithful.

We turn now to the case of∗-differential calculi. If(Ω, d) is such a calculus over a unital
∗-algebraA, then it is readily verified that, for all 1-formsω1, . . . , ωN ofΩ, (ω1 · · ·ωN)

∗ =
sNω

∗
N · · ·ω∗

1, where(sN) is the sequence of scalars defined inductively bys1 = 1 and
sN+1 = (−1)NsN . If ϕ is theN -cocycle associated to anN -dimensional weakly faithful,
closed, self-adjoint, twisted graded trace

∫
onΩ, thenϕ∗ = ϕ, whereϕ∗(a0, . . . , aN) =

sN+1ϕ̄(a
∗
N, . . . , a

∗
0) (as usual,̄ϕ is the complex conjugate function corresponding toϕ, so

thatϕ̄(x) = ϕ(x)). To see thatϕ∗ = ϕ, observe that, ifσ is a twist automorphism associated
to
∫

, then

ϕ∗(a0, . . . , aN) = sN+1ϕ̄(a
∗
N, . . . , a

∗
0) = sN+1(−1)N ϕ̄(σ (a∗

0), a
∗
N, . . . , a

∗
1)

= sN+1(−1)N
(∫

σ(a∗
0)(da

∗
N) · · · (da∗

1)

)−

= (−1)NsNsN+1

∫
(da1) · · · (dan)σ (a∗

0)
∗

= s2
N+1

∫
(da1) · · · (daN)σ−1(a0)

=
∫

a0 da1 · · · daN = ϕ(a0, . . . , aN).

Here, in the third last equation, we have used the easily verified fact thatσ−1(a∗) = σ(a)∗,
for all a ∈ A (this uses weak faithfulness of

∫
).

These observations motivate the following definitions.
If the function,ϕ : AN+1 → C, is multilinear, we defineϕ∗ by settingϕ∗(a0, . . . , aN) =

sN+1ϕ̄(a
∗
N, . . . , a

∗
0), for all a0, . . . , aN ∈ A.

If σ is an automorphism ofA such thatσ(a)∗ = σ−1(a∗), for all a ∈ A, then we callσ
regular. As we observed above, the restriction toA of a twist automorphism associated to
a weakly faithful, self-adjoint twisted graded trace is regular. Another observation: ifσ is
any self-adjoint automorphism ofA andσ 2 = id, thenσ is regular.

It is easy check that, ifσ is any regular automorphism ofA, andϕ ∈ CN
λ (A, σ ), then

ϕ∗ ∈ CN
λ (A, σ ). It is also the case that, ifbϕ = 0, thenbϕ∗ = 0. However, this requires
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some proof, so we give the details. It clearly suffices to show that, ifa0, . . . , aN+1 ∈ A,
then

N∑
i=0

(−1)iϕ(a∗
N+1, . . . , a

∗
i+1a

∗
i , . . . , a

∗
0) + (−1)N+1ϕ(a∗

N, . . . , a
∗
1, a

∗
0σ(aN+1)

∗) = 0.

Setbi = a∗
N+1−i , for i = 0, . . . , N + 1. Multiplying the above equation by(−1)N and

using the fact thatσ(aN+1)
∗ = σ−1(a∗

N+1) = σ−1(b0), we see that we need only show that

N∑
i=0

(−1)N−iϕ(b0, . . . , bN−ibN−i+1, . . . , bN+1)

+(−1)2N+1ϕ(b1, . . . , bN , bN+1σ
−1(b0)) = 0.

Now we use the fact thatλϕ = ϕ, which implies that(−1)Nϕ(b1, . . . , bN , bN+1σ
−1(b0)) =

ϕ(σ(bN+1)b0, b1, . . . , bN), to see that we have only to show that

N∑
i=0

(−1)N−iϕ(b0, . . . , bN−ibN−i+1, . . . , bN+1)

+(−1)N+1ϕ(σ(bN+1)b0, b1, . . . , bN) = 0;
that is, it suffices to show that

N∑
i=0

(−1)iϕ(b0, . . . , bibi+1, . . . , bN+1) + (−1)N+1ϕ(σ(bN+1)b0, b1, . . . , bN) = 0.

However, this is true, since it is just the equation(b′ +c)ϕ(b0, . . . , bN+1) = 0, which holds
becausebϕ = 0, by assumption.

If we defineϕ to beself-adjoint, if ϕ∗ = ϕ, then the preceding observations, together
with the easily checked equation(ϕ∗)∗ = ϕ, show that every elementϕ ∈ ZN

λ (A, σ ) can be
written in the formϕ = ϕ1 + iϕ2, for some self-adjoint elementsϕ1 andϕ2 in ZN

λ (A, σ ).
(Of course, one setsϕ1 = (ϕ + ϕ∗)/2 andϕ2 = (ϕ − ϕ∗)/2i.)

Now suppose that
∫

is anN -dimensional, closed, twisted graded trace on a∗-differential
calculus(Ω, d). If the twisted cyclicN -cocycleϕ associated to

∫
is self-adjoint, then

∫
is

self-adjoint. To see this we need only show that(
∫
ω)− = ∫

ω∗, whereω = a0 da1 · · · daN
orω = da1 · · · daN , for elementsa0, . . . , aN belonging toA. However, we have(∫

ω

)−
= ϕ̄(a0, . . . , aN) = ϕ̄∗(a0, . . . , aN) = sN+1ϕ(a

∗
N, . . . , a

∗
0)

= sN+1

∫
a∗
N(da

∗
1) · · · (da∗

0) = (−1)N
∫
((da0) · · · (daN−1)aN)

∗

=(−1)N
∫
(d(a0 da1 · · · daN−1)aN)

∗=
∫
(a0 d(a1 da2 · · · daN))

∗=
∫

ω∗.

In the second last equation we used the fact that
∫
d = 0 and thatd((a0 da1 · · · daN−1)aN) =

d(a0 da1 · · · daN−1)aN + (−1)N−1a0d(a1 da2 · · · daN).
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If ω = da1 · · · daN , it is clear that
∫
ω = 0 = ∫

ω∗ due to the closeness of
∫

.
We sum up our observations in the following theorem.

Theorem 3.4. LetA be a unital∗-algebra and letσ be a regular(algebra) automorphism
ofA. Let

∫
be anN -dimensional, closed, twisted graded trace on a∗-differential calculus

(Ω, d) overA, and suppose that its twist automorphism extendsσ . Let ϕ be the twisted
cyclicN -cocycle associated to

∫
, so thatϕ ∈ ZN

λ (A, σ ). Thenϕ is self-adjoint if, and only
if,
∫

is self-adjoint.

4. Twisted cyclic cohomology

In this section, we briefly consider the twisted cyclic cohomology theory of a pair(A, σ ),
whereA is a unital algebra andσ is an automorphism ofA. We shall be particularly interested
in the construction of analogues of the important operatorsS andB occurring in the classical
cyclic cohomology theory. These are used to relate twisted cyclic cohomology to twisted
Hochschild cohomology. We begin by defining the latter. Note that ifϕ ∈ Cn(A), then
(λn+1ϕ)(a0, . . . , an) = ϕ(σ(a0), . . . , σ (an)), for all a0, . . . , an ∈ A. Let C∗(A, σ ) =
⊕n∈NCn(A, σ ), whereCn(A, σ ) = {ϕ ∈ Cn(A)|λn+1ϕ = ϕ}. One can show that, forϕ ∈
Cn(A), we havebλn+1ϕ = λn+2bϕ andb′λn+1ϕ = λn+2b′ϕ. It follows thatC∗(A, σ ) is
invariant forb andb′ and therefore we get a cochain complex(C∗(A, σ ),b). We denote its
cohomology byHH(A, σ ) and call it thetwisted Hochschild cohomologyof the pair(A, σ ).

We shall now get the twisted cyclic cohomology as the cohomology of the total complex
of a bicomplex. To define this bicomplex we introduce the operatorN of degree zero on
C∗(A, σ ), defined, forϕ ∈ Cn(A, σ ), by settingNϕ = ∑n

i=0 λ
iϕ. One can show that

bN = Nb′ and(1 − λ)b = b′(1 − λ) andN(1 − λ) = 0. Hence, forCn = Cn(A, σ ), the
following diagram defines a bicomplex

...
...

...
...

b ↑ −b′ ↑ b ↑ −b′ ↑
C2 1−λ→ C2 N→ C2 1−λ→ C2 N→ · · ·
b ↑ −b′ ↑ b ↑ −b′ ↑
C1 1−λ→ C1 N→ C1 1−λ→ C1 N→ · · ·
b ↑ −b′ ↑ b ↑ −b′ ↑
C0 1−λ→ C0 N→ C0 1−λ→ C0 N→ · · ·

We denote this bicomplex byC∗∗(A, σ ) and its total complex byT∗(A, σ ). The entry in the
bicomplex at the position(m, n) is Cm,n(A, σ ) = Cn(A, σ ). We denote the cohomology of
T∗(A, σ )byHC∗(A, σ ). We shall see that this is isomorphic toHλ(A, σ ). The advantage of
this alternative description is that it enables us to define the operatorsS andB in a natural way.

We define a cochain mapπ from the complexC∗
λ(A, σ ) to the complexT∗(A, σ ) by

mappingx in Cn
λ(A, σ ) onto(x,0, . . . ,0) in Tn(A, σ ) = ⊕n

i=0Ci,n−i (A, σ ). Then one can
show that the induced linear map,π∗ : H∗

λ(A, σ ) → HC∗(A, σ ), is an isomorphism.
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We now defineC∗∗
[2] to be the cochain bicomplex obtained fromC∗∗(A, σ ) by restricting

to the first two columns and setting all other columns equal to zero. LetT∗
[2](A, σ ) be

the total complex ofC∗∗
[2] . We define a cochain mapθ from T∗

[2](A, σ ) to C∗(A, σ ) by

settingθ(x) = x, for x in T0
[2](A, σ ) = C0(A, σ ) and settingθ(x0, x1) = x0, for (x0, x1)

in Tn
[2](A, σ ) = Cn(A, σ ) ⊕ Cn−1(A, σ ), wheren > 0. The induced mapθ∗ mapping

H∗(T∗
[2](A, σ )) to HH∗(A, σ ), is an isomorphism.

Now we define a cochain map of degree 2 onT∗(A, σ ) by shifting its chain bicomplex
two columns to the right; more precisely, ifx = (x0, . . . , xn) ∈ Tn(A, σ ), setR(x) =
(0,0, x0, . . . , xn). Let P be the degree zero cochain map fromT∗(A, σ ) to T∗

[2](A, σ )

obtained by projecting; more precisely,P(x) = x for x ∈ T0(A, σ ) andP(x) = (x0, x1),
for x = (x0, . . . , xn) ∈ Tn(A, σ ), wheren > 0. This gives a short exact sequence of
cochain maps

0 → T∗(A, σ ) R→T∗(A, σ ) P→T∗
[2](A, σ ) → 0.

On the cohomological level we therefore get an exact triangle

Finally, we define the linear mapsI : H∗
λ(A, σ ) → HH∗(A, σ ),S : H∗

λ(A, σ ) → H∗
λ(A, σ )

and B : HH∗(A, σ ) → H∗
λ(A, σ ) of degrees 0, 2 and−1 respectively by settingI =

θ∗P∗π∗, S = π−1∗ R∗π∗ andB = π−1∗ ∂θ−1∗ . This gives us an exact triangle

By expansion of this we get a long exact sequence

· · · → Hn−2
λ (A, σ )

S→Hn
λ(A, σ )

I→HHn(A, σ )
B→Hn−1

λ (A, σ )
S→Hn+1

λ (A, σ ) → · · ·
Thus, we have indicated how the principal results of the elementary theory of cyclic co-
homology extends to the twisted case. Since the proofs in this more general setting are
essentially the same as in the non-twisted case, we have omitted the details.

5. Left-covariant differential calculi

Differential calculi that are left-covariant are of prime importance for the theory. We
shall introduce this concept now. For this we need to suppose thatA is endowed with a
co-multiplication∆ making the pair(A,∆) a Hopf algebra (such an algebra is unital by
assumption). In the sequel we shall use a number of elementary results about Hopf algebras
without explicit reference. A good general source for this material is[1].
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Recall that a left-covariant bi-module overA d is a pair(Γ,∆Γ ), whereΓ is a bi-module
overA, and∆Γ is a linear map fromΓ toA⊗ Γ such that the following conditions hold:

(1) (∆ ⊗ idΓ )∆Γ = (idA ⊗ ∆Γ )∆Γ and(e⊗ idΓ )∆Γ = idΓ , where e is the co-unit of
(A,∆), (that is,∆Γ is a left coaction);

(2) ∆Γ (aγ b) = ∆(a)∆Γ (γ )∆(b), for all γ ∈ Γ anda, b ∈ A.

Note that(Γ,∆Γ ) is a leftA-comodule (see e.g.[4, 1.3.2 Definition 7]). Later on, we
will use the Sweedler notation for such left comodules as explained in[4, 1.3.2 Eq. (60)].

An elementγ ∈ Γ is said to beleft-invariantif ∆Γ (γ ) = 1⊗ γ . We denote byΓ inv the
linear space of left-invariant elements ofΓ .

If a ∈ A andf is a linear functional onA, we setf ∗ a = (idA ⊗ f )∆(a). We shall
make use of the following result from the theory of left-covariant bi-modules.

Theorem 5.1 (S.L. Woronowicz[8,10]). Let(Γ,∆Γ ) be a left-covariant bi-module over a
Hopf algebra(A,∆).

(1) There is a unique isomorphism of leftA-modules fromA ⊗ Γ inv ontoΓ that maps
a ⊗ γ ontoaγ , for all a ∈ A andγ ∈ Γ inv.

(2) Suppose that the family of elements(γi)i∈I is a linear basis forΓ inv. Then it is a free left
A-module basis forΓ and also a free rightA-module basis ofΓ . Moreover, there exist
linear functionalsfjk onA, for all j, k ∈ I , such thatfjk(ab) = ∑

i∈I fji (a)fik(b)

and fjk(1) = δjk and for which we have the equationsγja = ∑
i∈I (fji ∗ a)γi and

aγj = ∑
i∈I γi((fjiκ

−1) ∗ a), whereκ is the co-inverse for(A,∆).

When we consider a sum
∑

i∈I xi of a family (xi)i∈I of elements in a vector spaceX
with no topological structure, it is understood thatxi = 0 for all but a finite number of
indicesi ∈ I .

Let (Ω, d) be a unital differential calculus overA such thatd1 = 0. This is a bi-module
overA in a natural way. If the map,∆Ω : Ω → A ⊗ Ω, makesΩ into a left-covariant
bi-module and(idA⊗ d)∆Ω = ∆Ωd, and∆Ω(a) = ∆(a), for all a ∈ A, we call the triple
(Ω, d,∆Ω) a left-covariant differential calculusover(A,∆). A moment’s reflection, using
the fact thatΩ is generated as an algebra by the elementsa and da, wherea ∈ A, shows
that only one such left action∆Ω can exist making(Ω, d,∆Ω) a left-covariant calculus.
For this reason, we often speak of the left-covariant differential calculus(Ω, d), omitting
explicit reference to∆Ω . Henceforth, we shall also often speak of the Hopf algebraA,
omitting explicit reference of the co-multiplication∆.

The map∆Ω is automatically of degree zero, where we regardA⊗Ω as graded algebra
in the obvious way (its space ofk-forms is the tensor productA⊗ Ωk).

The linear span of the set∆(A)(A⊗1) = {∆(a)(b⊗1)|a, b ∈ A} is equal toA⊗A (this
is true for any Hopf algebra). It follows from this that the linear span of∆Ω(Ω)(A⊗ 1) is
equal toA⊗ Ω.

We shall denote the linear space of left-invariantk-forms ofΩ byΩ inv
k .

LetA be any unital algebra (not necessarily the underlying algebra of a Hopf algebra).
In Section 2we introduced the universal differential algebra(Ω̄, d) overA (which is not
unital). But there also exists a universal unital differential algebra overA and this is the one
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we will be working with in the rest of this paper. There exists a unital graded differential
algebra(Ω̃, d), for which Ω̃0 = A, that has the following universal property: Ifσ is a
unital algebra homomorphism fromA into the algebraΩ0 of 0-forms of a unital graded
differential algebra(Ω, d), then there exists a unique unital algebra homomorphismσ̃ from
Ω̃ to Ω extendingσ such that̃σd = dσ̃ . This property uniquely determines(Ω̃, d) (up to
isomorphism). Note thatd1 = 0.

We shall use the following useful property of(Ω̃, d):
Let n be a non-negative integer andT a multilinear map fromAn+1 to a linear spaceY

such thatT (a0, . . . , an) = 0, if any of the elementsa1, . . . , an is a scalar. Then there is a
unique linear map̂T from Ω̃n to Y for which T̂ (a0 da1 · · · dan) = T (a0, a1, . . . , an), for
all a0, a1, . . . , an ∈ A.

Theorem 2.1remains valid for(Ω̃, d) in place of(Ω̄, d), providedσ0 is assumed to be
unital.

If (A,∆) is a Hopf algebra, then the universal unital calculus(Ω̃, d) over A is a
left-covariant calculus over(A,∆). To see this, first observe thatA ⊗ Ω̃ can be made
into a differential calculus, where idA ⊗ d is its differential. The map∆, regarded as an
algebra homomorphism fromA to the 0-forms ofA⊗ Ω̃, extends to an algebra homomor-
phism∆′ from Ω̃ toA ⊗ Ω̃ such that∆′d = (idA ⊗ d)∆′. It now follows from the next
lemma that(∆̃, d,∆′) is a left-covariant differential calculus over(A,∆).

Lemma 5.2. Let (Ω, d) be a unital differential calculus over a Hopf algebra(A,∆) such
thatd1 = 0 and suppose that∆Ω : Ω → A⊗ Ω is an algebra homomorphism extending
∆ : A → A ⊗ A such that(idA ⊗ d)∆Ω = ∆Ωd. Then(Ω, d,∆Ω) is a left-covariant
differential calculus.

Proof. We have to prove that(∆⊗ idΩ)∆Ω = (idA⊗∆Ω)∆Ω and(e⊗ idΩ)∆Ω = idΩ ,
where e is the co-unit of(A,∆). We shall prove only the first of these equations; the proof of
the second is straightforward. Since(∆⊗ idΩ)∆Ω and(idA⊗∆Ω)∆Ω are homomorphisms
andΩ is generated as an algebra by the formsa and da, wherea ∈ A, we need only see that
these homomorphisms are equal at such forms. This is obvious in the case of the elements
a, since∆Ω(a) = ∆(a). For da we have

(∆ ⊗ idΩ)∆Ω d(a) = (∆ ⊗ idΩ)(idA ⊗ d)∆(a)=(idA ⊗ idA ⊗ d)(∆ ⊗ idA)∆(a)

= (idA ⊗ idA ⊗ d)(idA ⊗ ∆)∆(a) = (idA ⊗ ∆Ωd)∆(a)

= (idA ⊗ ∆Ω)(idA ⊗ d)∆(a) = (idA ⊗ ∆Ω)∆Ωd(a).

This proves the lemma. �

Recall that a linear functionalh on a Hopf algebraA is said to beleft-invariant if
(id ⊗h)∆(a) = h(a)1, for alla ∈ A, where 1 is the unit ofA. Similarly, a linear functional
h′ onA is right-invariant if (h′ ⊗ id)∆(a) = h′(a)1, for all a ∈ A. Such functionals do
not necessarily exist. It is easily seen that there is at most one unital linear functionalh

onA that is both left and right-invariant. We call such a functional aHaar integralof A.
In the sequel, we shall be principally interested in working with Hopf algebras that admit
Haar integrals. IfA is the Hopf algebra associated to a compact quantum group in the sense
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of Woronowicz, then it admits a Haar integral. From the point of view of relevance of the
theory we are developing here, the Hopf algebras associated to quantum groups are those
of prime interest.

We say that a linear functional
∫

on a left-covariant differential calculus(Ω, d) over a
Hopf algebraA is left-invariant if (idA ⊗ ∫

)∆Ω(ω) = (
∫
ω)1, for allω ∈ Ω, where 1 is

the unit ofA.
Clearly, the restriction of

∫
to A is a left-invariant linear functional onA; however, it

may be equal to zero onA (this is frequently the case).

Theorem 5.3. Let
∫

be a linear functional on a left-covariant differential calculus(Ω, d)

over a Hopf algebraA. Suppose also thatA admits a Haar integralh. Then the following
are equivalent conditions:

(1)
∫
aω = h(a)

∫
ω, for all a ∈ A and for allω ∈ Ω inv;

(2)
∫

is left-invariant.

Proof. Assume first that
∫

is left-invariant and suppose thata ∈ A andω ∈ Ω inv. Since
h(1) = 1, we have

∫
aω = h((

∫
aω)1) = h((idA⊗∫ )∆Ω(aω)) = (h⊗∫ )(∆(a)(1⊗ω)) =∫

((h ⊗ idA)∆(a))ω = ∫
h(a)ω = h(a)

∫
ω. Hence, Condition (2) implies Condition (1).

Now suppose that Condition (1) holds, and leta andω be as before. We may write
∆(a) = ∑M

i=1 bi⊗ci , for some elementsbi andci inA. Then(idA⊗∫ )(∆Ω(aω)) = (idA⊗∫
)(∆(a)(1⊗ω)) = (idA⊗∫ )(∑M

i=1 bi ⊗ciω) = ∑M
i=1(

∫
ciω)bi = ∑M

i=1 h(ci)(
∫
ω)bi =

(idA⊗ h)(∆(a))
∫
ω = h(a)(

∫
ω)1 = (

∫
aω)1. SinceΩ is the linear span of the elements

aω, it follows that
∫

is left-invariant. Hence, Condition (1) implies Condition (2). �

It is a well-known and useful result that ifh is a left-invariant linear functional on a Hopf
algebraA andκ is the co-inverse onA, then

κ((idA ⊗ h)(∆(a)(1 ⊗ b))) = (idA ⊗ h)((1 ⊗ a)∆(b)),

for all elementsa, b ∈ A. We show now that a corresponding such result holds for
left-invariant linear functionals on a differential calculus.

Theorem 5.4. Let (Ω, d) be a left-covariant differential calculus over a Hopf algebraA
and let

∫
be a left-invariant linear functional onΩ. Then,

κ(

(
idA ⊗

∫ )
(∆Ω(ω)(1 ⊗ ω′))) =

(
idA ⊗

∫ )
((1 ⊗ ω)∆Ω(ω′)),

for all ω,ω′ ∈ Ω, whereκ is the co-inverse ofA.

Proof. Using the Sweedler notation for leftA-comodules (see[4, 1.3.2 Eq. (60)]), we get
that∆Ω(ω)(1⊗ω′) = ∑

ω(−1) ⊗ω(0)ω
′. Applying idA⊗∆Ω to the right hand side of this

equation, the leftA-comodule property ofΩ guarantees that
∑

ω(−1) ⊗ ∆Ω(ω(0)ω
′) =∑

ω(−2) ⊗ ω(−1)ω
′
(−1) ⊗ ω(0)ω

′
(0). If we apply idA ⊗ idA ⊗ ∫

to this equation and use the
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left invariance of
∫

, we see that

(
idA ⊗

∫ )
(∆Ω(ω)(1 ⊗ ω′)) ⊗ 1

=
(∑

ω(−1)

∫
ω(0)ω

′
)

⊗ 1 =
∑

ω(−2) ⊗ ω(−1)ω
′
(−1)

∫
ω(0)ω

′
(0).

By applyingm(κ ⊗ idA) to this equation and using the equalitiesm(κ ⊗ idA)∆ = e(·)1
and(e⊗ idΩ)∆Ω = idΩ , this implies

κ

((
idA ⊗

∫ )
(∆Ω(ω)(1 ⊗ ω′))

)

=
∑

κ(ω(−2))ω(−1)ω
′
(−1)

∫
ω(0)ω

′
(0) =

∑
e(ω(−1))ω

′
(−1)

∫
ω(0)ω

′
(0)

=
∑

ω′
(−1)

∫
e(ω(−1))ω(0)ω

′
(0) =

∑
ω′
(−1)

∫
ωω′

(0)

=
(

idA ⊗
∫ )

((1 ⊗ ω)∆Ω(ω′)). �

Theorem 5.5. Let (Ω, d) be a left-covariant differential calculus over a Hopf algebraA
admitting a Haar integralh. Then the linear map, P : Ω → Ω, defined by settingP =
(h⊗ idΩ)∆Ω , is idempotent with image equal toΩ inv; also, P(ω1ωω2) = ω1P(ω)ω2, for
all ω ∈ Ω andω1, ω2 ∈ Ω inv. Moreover, Pd = dP. If

∫
is a left-invariant linear functional

onΩ, then
∫
P(ω) = ∫

ω, for all ω ∈ Ω.

Proof. It is clear thatP(ω) = ω for all ω ∈ Ω inv. If ω in Ω, thenP(ω) = ∑
h(ω(−1))ω(0).

Hence, using the left invariance ofh in the second equality, we see that

∆Ω(P (ω)) =
∑

h(ω(−2))ω(−1) ⊗ ω(0) =
∑

1 ⊗ h(ω(−1))ω(0) = 1 ⊗ P(ω),

henceP(ω) ∈ Ω inv. It follows thatP 2 = P andP(Ω) = Ω inv.
Now suppose thatω is an arbitrary form ofΩ and thatω1, ω2 ∈ Ω inv. ThenP(ω1ωω2) =

(h ⊗ idΩ)((1 ⊗ ω1)∆Ω(ω)(1 ⊗ ω2)) = ω1(h ⊗ idΩ)(∆Ω(ω))ω2 = ω1P(ω)ω2.
We also havePd(ω) = (h ⊗ idΩ)∆Ωd(ω) = (h ⊗ idΩ)(idA ⊗ d)∆Ω(ω) = d(h ⊗

idΩ)∆Ω(ω) = dP(ω). Hence,Pd = dP.
Suppose now

∫
is a left-invariant linear functional onΩ. Then

∫
P(ω) = ∫

(h ⊗
idA)∆Ω(ω) = (h ⊗ ∫

)∆Ω(ω) = h((idA ⊗ ∫
)∆Ω(ω)) = h((

∫
ω)1) = ∫

ω. �

If ω′ andω are invariant elements ofΩ, then
∫
ω′aω = h(a)

∫
ω′ω, since

∫
ω′aω =∫

P(ω′aω) = ∫
ω′P(a)ω = h(a)

∫
ω′ω.

Corollary 5.6. The linear space ofN -dimensional, left-invariant linear functionals onΩ
is linearly isomorphic to the linear dual ofΩ inv

N . Hence, Ω admits a unique non-zero,
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N -dimensional, left-invariant linear functional, up to a non-zero scalar factor, if, and only
if, dim(Ω inv

N ) = 1.

Proof. It follows directly from the theorem that he restriction map,
∫ �→ ∫

Ω inv
N

, is the linear

isomorphism of the preceding statement. Surjectivity of this map is the only non-obvious
point. This is seen by observing that ifτ is a linear functional onΩ inv

N , then we can
define the corresponding linear functional onΩ by setting

∫
ω = 0, if ω is a k-form

for which k < N , and by setting
∫
ω = τP (ω), if ω ∈ ΩN . Then if a ∈ A and

ω ∈ Ω inv
N , and if ∆(a) = ∑M

i=1 bi ⊗ ci , for some elementsbi and ci belonging to

A, we have(idA ⊗ ∫
)(∆Ω(aω)) = (idA ⊗ ∫

)(∆(a)(1 ⊗ ω)) = ∑M
i=1 τ(P (ci)ω)bi =∑M

i=1 h(ci)τ (ω)bi = (idA ⊗ h)(∆(a))τ (ω) = h(a)τ(ω)1 = τP (aω) = (
∫
aω)1. Hence,

by Theorem 5.1,
∫

is left-invariant. �
A Haar integralh on a Hopf algebraA is necessarilyleft faithful in the sense that,

whenevera is an element ofA for whichh(ba) = 0, for all b ∈ A, we must havea = 0.

Theorem 5.7. Let
∫

be a non-zero, left-invariant linear functional on a left-covariant
differential calculus(Ω, d) over a Hopf algebraA admitting a Haar integralh. Then

∫
is

weakly faithful.

Proof. Suppose thata ∈ A and that
∫
ωa = 0, for all ω ∈ Ω. Since

∫ �= 0, we may
chooseω such that

∫
ω �= 0. Then, for allb ∈ A, we have 0= ∫

ωba = ∫
P(ωba) =∫

P(ω)h(ba) = (
∫
ω)h(ba). It follows, from faithfulness ofh, thata = 0. Hence,

∫
is

weakly faithful. �

Theorem 5.8. Let(Ω, d) be anN -dimensional left-covariant differential calculus over the
Hopf algebraA admitting a Haar integralh. If (Ω, d) admits a left faithful, left-invariant,
N -dimensional linear functional

∫
, thendim(Ω inv

N ) = 1.

Proof. Let ω be an invariantN -form of Ω for which
∫
ω = 0. If a ∈ A, then

∫
aω =

h(a)
∫
ω = 0. It follows, by faithfulness of

∫
, thatω = 0. Therefore, the linear map,∫

: Ω inv
N → C, is injective. Since

∫
is non-zero and left-invariant, this restriction map

cannot be the zero map. Hence, it is a linear isomorphism ofΩ inv
N onto C. Therefore,

dim(Ω inv
N ) = 1, as required. �

Corollary 5.9. The functional
∫

is closed if, and only if, d(Ω inv
N−1) = 0. If

∫
is closed, it is

necessarily a twisted graded trace.

Proof. First observe that ifP = (h ⊗ idΩ)∆Ω , anda ∈ A andω ∈ Ω inv, then
∫
(da)ω =∫

P((da)ω) = ∫
P(da)ω = ∫

(dP(a))ω = 0, sinceP(a) ∈ C1 andd1 = 0. Hence,∫
d(aω) = ∫

a dω + ∫
(da)ω = ∫

a dω. Using the identificationΩN−1 = AΩ inv
N−1, it

follows from this observation that ifd(Ω inv
N−1) = 0, then

∫
d = 0; that is,

∫
is closed.

Suppose now conversely that
∫

is closed and letω ∈ Ω inv
N−1. Then 0= ∫

d(aω) = ∫
a dω,

for all a ∈ A. By faithfulness of
∫

, d(ω) = 0. Hence,d(Ω inv
N−1) = 0, as required.
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Now suppose that
∫

is closed and we shall show it is a twisted graded trace. Choose
any non-zero elementθ in Ω inv

N for which
∫
θ = 1; thenΩ inv

N = Cθ . SinceAθ = θA,
by Theorem 5.1, there is a unique automorphismρ1 of A such thatθa = ρ1(a)θ , for all
a ∈ A. Also, the Haar integralh admits another automorphismρ2 of A such thath(ba) =
h(ρ2(a)b), for all a, b ∈ A. Setσ0 = ρ2ρ1. Then

∫
bθa = ∫

bρ1(a)θ = h(bρ1(a)) =
h(ρ2ρ1(a)b) = ∫

σ0(a)bθ . It follows from Theorem 2.2that
∫

is a twisted graded trace.�

We say that anN -dimensional differential calculus(Ω, d) over a unital algebraA is
non-degenerateif, wheneverω is ak-form in Ω for whichω′ω = 0, for all ω′ ∈ ΩN−k,
we necessarily haveω = 0. It is clear that ifΩ admits a left faithful,N -dimensional linear
functional, thenΩ is non-degenerate.

Theorem 5.10. Let(Ω, d) be a non-degenerate,N -dimensional, left-covariant differential
calculus over a Hopf algebraA admitting a Haar integralh. ThenΩ admits a left faithful,
left-invariant, N -dimensional linear functional if, and only if, dim(Ω inv

N ) = 1.

Proof. The forward implication follows fromCorollary 5.6. Suppose conversely
dim(Ω inv

N ) = 1. Then, byCorollary 5.6,Ω admits a non-zero,N -dimensional, left-invariant
linear functional

∫
(unique up to multiplication by a scalar factor). To prove the theorem,

we have only to show now that
∫

is left faithful. Thus, we must show that ifω ∈ Ω and∫
ω′ω = 0, for allω′ ∈ Ω, thenω = 0. We may clearly suppose, without loss of generality,

thatω ∈ Ωk, for some indexk ≤ N . Then ifω′ ∈ ΩN−k, we haveω′ω = aθ , for some
elementa ∈ A. Hence, ifb ∈ A,

∫
bω′ω = 0, by assumption. Hence,h(ba) = 0, for all

b ∈ A. By faithfulness ofh, a = 0. Therefore,ω′ω = 0. We now use non-degeneracy of
Ω to deduce thatω = 0, as required. �

Woronowicz has constructed a certain non-degenerate, left-covariant, three-dimensional
calculus(Ω, d) over the Hopf algebraA underlying the compact quantum group SUq(2),
whereq is a real parameter for which 0< |q| ≤ 1. For this calculus,Ω inv

1 has a linear basis
ω0, ω1, ω2 for whichAωi = ωiA, for i = 0,1,2. Hence, for each indexi, there exists an
automorphismρi of A such thatωia = ρi(a)ωi , for all a ∈ A.

Since SUq(2) is a compact quantum group, it admits a Haar integralh. Also, there is
an automorphismρ of A such thath(ba) = h(ρ(a)b), for all a, b ∈ A. We define a
one-dimensional, left-invariant linear functional

∫
onΩ by setting

∫
a0ω0+a1ω1+a2ω2 =

h(a1) + h(a2). This functional is closed. To see this, observe first that there exist linear
functionalsχ0, χ1, χ2 onA such that da = ∑2

i=0(χi ∗ a)ωi , for all a ∈ A. Sinced1 =
0, we haveχi(1) = 0, for all i. Using this, and right-invariance ofh, we get

∫
da =

h(χ1 ∗ a) + h(χ2 ∗ a) = h(a)χ1(1) + h(a)χ2(1) = 0.
We claim now that

∫
is not a twisted graded trace. Otherwise, letσ denote its twist auto-

morphism. Then
∫
ωa = ∫

σ(a)ω, for allω ∈ Ω1. Therefore, fora, b ∈ A andi = 1,2, we
haveh(ρρi(a)b) = h(bρi(a)) = ∫

bρi(a)ωi = ∫
bωia = ∫

σ(a)bωi = h(σ(a)b). Faith-
fulness ofh now implies thatρρi(a) = σ(a), for all a ∈ A. Hence,ρ1 = ρ2. But if α, γ
are the canonical generators of SUq(2) as in[8], thenρ1(α) = q−2α andρ2(α) = q−1α,
by Table 1 of[8]. Hence,ρ1 �= ρ2. This contradiction shows that, as claimed,

∫
is not a

twisted graded trace.
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We now truncate Woronowicz’s calculus to get a one-dimensional differential calculus
(Ω ′, d ′)overA. Then(Ω ′, d ′) is a non-degenerate, left-covariant, one-dimensional calculus
overA, andω0, ω1, ω2 is a linear basis for the space of invariant 1-forms.

The restriction
∫ ′ of

∫
toΩ ′ is a closed, left-invariant, one-dimensional linear functional

onΩ ′. As we saw is the case for
∫

, the functional
∫ ′ is also not a twisted graded trace. This

shows that the faithfulness hypothesis inTheorem 5.10is necessary.

Lemma 5.11. Let
∫

be a left-invariant twisted graded trace on the universal unital differ-
ential calculus(Ω̃, d) over a Hopf algebraA admitting a Haar integralh. LetI be the left
kernel of

∫
and letJ = I ∩ Ω̃ inv. Then the linear map fromA⊗ J to I that sendsa ⊗ ω

ontoaω is an isomorphism of leftA-modules. Hence, I is invariant under∆Ω̃ in the sense
that∆Ω̃(I) ⊆ A⊗ I .

Proof. Letω ∈ I ; using the identification ofA⊗ Ω̃ inv with Ω̃, we write, as we may,ω =∑M
i=1 aiωi , wherea1, . . . , aM are linearly independent elements ofA, andω1, . . . , ωM

are left-invariant elements of̃Ω. SetX = {(h(ba1), . . . , h(baM))|b ∈ A}. We claim that
X = CM . Suppose otherwise (and we shall obtain a contradiction). Then there exists a
non-zero linear functionalτ on CM such thatτ(x) = 0, for all x ∈ X. Clearly, τ is
determined by scalarsµ1, . . . , µM , in the sense thatτ(λ1, . . . , λM) = ∑M

i=1 λiµi , for all
λ1, . . . , λM ∈ C. Moreover, sinceτ �= 0, the scalarsµi are not all equal to zero. Now
let b ∈ A. Thenh(b(

∑M
i=1µiai)) = ∑M

i=1µih(bai ) = τ(h(ba1), . . . , h(baM)) = 0.
Hence,

∑M
i=1µiai = 0, by faithfulness ofh. This contradicts the linear independence

of the elementsa1, . . . , aM . Consequently, to avoid contradiction, we must haveX =
CM . It follows that there exist elementsb1, . . . , bM ∈ A such thath(bjai) = δji , for
i, j = 1, . . . ,M. Hence, for any invariant elementη in Ω̃, we have, sinceω ∈ I , 0 =∑M

i=1

∫
ηbjaiωi = ∑M

i=1 h(bjai)
∫
ηωi = ∫

ηωj . Therefore, for any elementa ∈ A,∫
aηωj = h(a)

∫
ηωj = 0. Consequently, the formωj belongs toI and therefore, since it

is left-invariant, it belongs toJ . The lemma now follows. �

Theorem 5.12. Let
∫ ′ be anN -dimensional, left-invariant, closed twisted graded trace

on the universal unital differential calculus(Ω̃, d) over a Hopf algebraA admitting a
Haar integralh. TheN -dimensional differential calculus(Ω, d) associated to(Ω̃, d,

∫ ′
)

is left-covariant and the canonical twisted graded trace
∫

on (Ω, d) is left-invariant.

Proof. Let φ be the canonical algebra isomorphism fromA⊗Ω onto the quotient algebra
(A⊗Ω̃)/(A⊗I ) obtained by mappinga⊗(ω+I ) ontoa⊗ω+A⊗I , for alla ∈ A andω ∈
Ω̃. Then the map,∆Ω : Ω → A⊗Ω, defined by setting∆Ω(ω+I ) = φ−1(∆Ω̃ω+A⊗I ),
for all ω ∈ Ω̃, is a coaction making(Ω, d) left-covariant. This follows from the readily
verified facts that∆Ω is an algebra homomorphism extending the co-multiplication onA
and that(idA ⊗ d)∆Ω = ∆Ωd.

To see that
∫

is left-invariant, letω ∈ Ω̃ and suppose that∆Ω̃(ω) = ∑M
i=1 ai ⊗ ωi , for

some elementsai in A and formsωi in Ω̄. Then
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(
idA ⊗

∫ )
∆Ω(ω + I ) =

(
idA ⊗

∫ )( M∑
i=1

ai ⊗ (ωi + I )

)

=
M∑
i=1

(∫
ωi + I

)
ai =

M∑
i=1

(∫ ′
ωI

)
ai

=
(

idA ⊗
∫ ′ )

(∆Ω̃ω) =
(∫ ′

ω

)
1 =

(∫
ω + I

)
1.

Thus,
∫

is left-invariant, as required. �

Let A be a Hopf algebra and̄A the quotient linear spaceA/C1 with corresponding
quotient mapπ : A→ A/C1. Fora ∈ A, setā = π(a) ∈ Ā. Define the left coaction̄∆ of
A on Ā by setting∆̄(π(a)) = (idA ⊗ π)∆(a) for all a ∈ A. Define the left coaction∆N

ofA onA⊗ Ā⊗N
as the tensor product left coaction∆⊗ ∆̄⊗N (see[4, 1.3.2 Eq. (61)]for

the tensor product of two right coactions and adapt it to left coactions in the obvious way).
If ϕ : AN+1 → C is a multilinear function that vanishes on any element(a0, a1, . . . , aN),

whenever any of the componentsa1, . . . , aN belongs toC1, we letϕ̂ be the corresponding

linear map onA⊗ Ā⊗N
(so thatϕ̂(a0 ⊗ ā1 · · · ⊗ āN ) = ϕ(a0, . . . , aN)). We say thatϕ is

left-invariant if (idA ⊗ ϕ̂)∆N(c) = ϕ̂(c)1, for all c ∈ A⊗ Ā⊗N
, where 1 is the unit ofA.

Suppose now thatϕ is the twisted cyclic cocycle associated anN -dimensional, closed
twisted graded trace

∫
onΩ, for some left-covariant differential calculus(Ω, d) overA. A

straightforward calculation shows that(
id ⊗

∫ )
(∆(a0)∆Ωd(a1) · · ·∆Ωd(aN)) = (id ⊗ ϕ̂)(∆N(a0 ⊗ ā1 ⊗ · · · ⊗ āN )),

for all elementsa0, a1, . . . , aN ∈ A. From this it follows easily that
∫

is left-invariant if,
and only if,ϕ̂ is left-invariant.

We summarize our observations here in the following result.

Theorem 5.13. Suppose that(Ω, d) is a left-covariant differential calculus over a Hopf
algebraA and that

∫
is anN -dimensional closed, twisted graded trace onΩ. Let ϕ be

the corresponding twisted cyclicN -cocycle. Then
∫

is left-invariant if, and only if, ϕ is
left-invariant.

6. A construction of a three-dimensional differential calculus

In this section, we indicate how our construction of a differential calculus from a closed
twisted graded trace on the universal unital differential calculus can be used to show the
existence of a three-dimensional calculus first constructed by very different means by
Woronowicz.

First, recall that the universal unital differential calculusΩ̃ over a Hopf algebraA is
left-covariant. Letκ be the co-inverse onA, and denote bym the linear map fromA⊗ Ω̃

to Ω̃ that sends the elementary tensora ⊗ ω onto the productaω. Define the linear map
w from A to Ω̃ inv

1 by settingw(a) = m(κ ⊗ d)∆(a). If the unit 1 ofA and the family
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(ei)i∈I form a linear basis forA, then, for each positive integerk, the products of the form
w(ei1) · · ·w(eik ), wherei1, . . . , ik ∈ I , form a linear basis ofΩ̃ inv

k [10, Section 5 and 4,
Section 14.3.2].

If A is a Hopf∗-algebra, thenΩ̃ is a ∗-differential calculus overA, wherew(a)∗ =
−w(κ(a)∗), for all a ∈ A.

Suppose now thatq is a non-zero real parameter for which|q| ≤ 1. We denote byAq the
Hopf algebra associated to the compact quantum group SUq(2) [8]. Recall thatAq is the
universal unital∗-algebra generated by a pair of elementsα andγ satisfying the relations

α∗α + γ ∗γ = 1, αα∗ + q2γ γ ∗ = 1,

γ ∗γ = γ γ ∗, αγ = qγα, αγ ∗ = qγ ∗α.

The co-multiplication∆ onAq is the unique unital∗-homomorphism for which∆(α) =
α ⊗ α − qγ ∗ ⊗ γ and∆(γ ) = γ ⊗ α + α∗ ⊗ γ .

Let E = (Z × N × N) \ {(0, 0, 0)}. For ε = (k, l, m) ∈ E, denote byaε the product
αkγ l(γ ∗)m. Here we use the usual convention in this context that fork < 0,αk = (α∗)−k.
It is well-known that these elementsaε, together with 1, form a linear basis forAq . Writing
wε for w(aε), it follows that the productswε1wε2wε3 form a basis forΩ̃ inv

3 , that we shall
call thestandardbasis ofΩ̃ inv

3 .
Again suppose thatε = (k, l, m). We setc(ε) = 0 if l or m are positive and we set

c(ε) = c(k) = (1 − q−2k)(1 − q−2)−1, if l = m = 0. If ω is a standard basis element,
ω = wε1wε2wε3, we setc(ω) = c(ε1) + c(ε2) + c(ε3).

We shall say thatε is reducedif (k, l) = (0,1), (0,0) or (1,0); in this case we set
t (ε) = −1, 0, or 1, respectively, and we callt (ε) thetypeof ε.

We shall say that a standard basis elementω = wε1wε2wε3 is reduced, if all the factors
have reduced indices and their types are distinct. We sett (ω) = (t (ε1), t (ε2), t (ε3)).

UsingTheorem 5.3, we define a three-dimensional left-invariant linear functional
∫

on
the universal unital differential calculus̃Ω overAq by setting

∫
equal to zero on all of

the non-reduced standard basis elements, and by defining
∫

on a reduced standard basis
elementω = wε1wε2wε3 as follows:

(1) if t (ω) = (−1, 0, 1),
∫
ω = c(ω);

(2) if t (ω) = (−1, 1, 0),
∫
ω = −q4c(ω);

(3) if t (ω) = (0, −1, 1),
∫
ω = −q4c(ω);

(4) if t (ω) = (0, 1, −1),
∫
ω = q6c(ω);

(5) if t (ω) = (1, −1, 0),
∫
ω = q6c(ω);

(6) if t (ω) = (1,0,−1),
∫
ω = −q10c(ω).

Using the formulaw(a)∗ = −w(κ(a)∗), it is not that hard to prove that the functional
∫

is self-adjoint.
Letσ0 be the twist automorphism associated to the Haar measureh onAq ; that is,σ0 is the

unique automorphism onAq for whichh(a′a) = h(σ0(a)a
′), for all a, a′ ∈ Aq . Let σ1 be

the unique automorphism onAq for whichσ1(α) = q−4α, σ1(γ ) = q−4γ , σ1(α
∗) = q4α∗

andσ1(γ
∗) = q4γ ∗. (This automorphism exists as a consequence of the universal property

enjoyed byAq ). Finally, setσ = σ0σ1; of course,σ is again an automorphism. Using[4,
14.3.2 Eq. (51)], one checks that

∫
ωa = ∫

σ(a)ω, for all a ∈ Aq andω ∈ Ω̃3.
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If a ∈ Aq and∆(a) = ∑
i bi ⊗ ci , then d(w(a)) = ∑

i w(bi)w(ci) [4, 14.3.2 Eq. (52)].
After a tedious case by case verification, this formula allows us to prove that

∫
is closed.

Fully detailed proofs of these facts can be found in[5].
Now one usesTheorem 2.1to deduce that

∫
is a twisted graded trace. Moreover, the

twist automorphism̃σ of
∫

extends the automorphismσ ofAq . We use these facts, and the
fact that

∫
is self-adjoint, to apply the construction ofSection 2to the triple(Ω̃, d,

∫
) to

deduce the existence of a left-covariant, three-dimensional∗-differential calculusΩ over
Aq . We shall denote the canonical twisted graded trace onΩ by the same symbol

∫
and

refer to the domains of these functionals to distinguish them in cases of ambiguity.
Letπ denote the quotient map from̃Ω ontoΩ. It is easy to verify from the definition of∫
on Ω̃ that,

(1) For allk ∈ Z, π(w(αk)) = c(k)π(w(α)), π(w(αkγ )) = π(w(γ )) andπ(w(αkγ ∗)) =
π(w(γ ∗));

(2) For allk, l,m ∈ Z for which l, m ≥ 0 andl + m ≥ 2, we haveπ(w(k,l,m)) = 0.

Setω0 = −qπ(w(γ ∗)), ω1 = π(w(α)) andω2 = −q−1π(w(γ )). It follows from Condi-
tions (1) and (2) thatω0, ω1 andω2 linearly spanΩ inv. It is immediate from the definition
of
∫

on Ω̃ that

∫
ω0ω1ω2 = 1,

∫
ω0ω2ω1 = −q4,

∫
ω1ω0ω2 = −q4,∫

ω1ω2ω0 = q6,

∫
ω2ω0ω1 = q6,

∫
ω2ω1ω0 = −q10 (6.1)

and that
∫
ωiωjωk = 0, for everyi, j, k ∈ {0,1,2}, where any two of the indicesi, j, k are

the same.
Since the trace

∫
onΩ is left faithful, it follows easily thatω0, ω1 andω2 are linearly

independent and therefore that they form a linear basis forΩ inv.
Let a andb1, . . . , bM andc1, . . . , cM be elements inAq such that∆(a) = ∑M

i=1 bi ⊗ ci .
Then, by Eqs. (51) and (52) of[4, 14.3.2], and the equationw(a)∗ = −w(κ(a)∗), which
holds for alla ∈ Aq , we have

(1) π(w(a))b = ∑M
i=1 biπ(w(āci)), for all b ∈ Aq ;

(2) da = ∑M
i=1 biπ(w(ci));

(3) dπ(w(a)) = ∑M
i=1π(w(bi))π(w(ci));

(4) ω∗
0 = qω2, ω

∗
1 = −ω1, ω

∗
2 = q−1ω0.

Applying these formulas in our particular case, it is easy to check that the differential
calculus(Ω, d) that we have constructed here satisfies the formulas in Tables 1, 2 and 6 of
[8]. Using faithfulness of

∫
onΩ, combined with the formulas inEq. (6.1), one can readily

verify that our differential calculus also satisfies the formulas of Table 5 of[8] and that the
three elementsω0ω1, ω0ω2 andω1ω2 form a linear basis forΩ inv

2 .
With this information at hand, it is now straightforward to conclude that our∗-differential

calculus(Ω, d) is isomorphic to the three-dimensional calculus constructed by Woronowicz
in [8] by an entirely different method.
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We believe that our method for constructing calculi is one that is perhaps more natural
than other methods, since the basis of our approach is essentially to devise a “presentation”
of the calculus in terms of generators and relations. It has the advantage over other methods
that after some tedious but basic combinatorical computations, the structure of the whole
space of differential forms is set up correctly.
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